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ABSTRACT

A linear control subroutine library was created and
stored in a load module on Disk 02 of the IBM/360 of the
Naval Postgraduate School.

This library consists of three groups of programs:
transfer function subprograms; matrix manipulation and time
response subprograms; and modern control design routines.
The transfer function subprograms provide numerical aids
for classical control design techniques including root locus
and frequency design methods. The matrix manipulation and
time response routines allow the user to determine eigen-
values, find state transition matrices, evaluate resolvent
matrices, perform several other matrix operations and
determine and plot graphical time responses. The modern
control design programs aid in solving Linear Quadratic
Gaussian (LQG) problems and also provide the capability to
investigate sensitivity and to de-couple multi-input multi-
output systems.

This thesis is a user's manual for the library of control
design programs. Applications, extensive documentation and

numerous worked examples are included.
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I. INTRODUCTION

A large number of computer programs are available to
help today's control system engineers analyse and design
increasingly complex systems. Most of these programs, how-
ever, are available in the form of listings only, so any
one wishing to use them must punch the cards, compile and
test the routings, modify them and, most of the time, load
them everytime a problem is to be solved. Obviously this is
not a very practical and efficient way of using computers.

The intent of this thesis was to facilitate the use of
several of these programs by making them easily accessible
to all users as a pre-compiled load module library. The
features of the library were to be as follows:

- easy access to the subprograms

- only rudimentary knowledge of FORTRAN coding and card

set up procedures required to use the subprograms

- good documentation readily available to the

users (complete with subprogram descriptions, card
set up procedures and worked out examples)

- an expandable and improvable library

- good priority eategories (class A or B only)

for quick turnaround.

Using these features as guidelines, a linear control sub-

routines library (LINCON) was created, tested and is now

available to any user on the Naval Postgraduate School IBM/360.

13




The following chapters describe the computer procedures
and present these linear control subprograms contained in
the library. All the different aspects of deck preparation
and job control cards are discussed. The most common error
conditions that may occur while using the subprograms and
the remedial actions to be taken are pointed out. The linear
control subprograms are presented in a user-oriented fashion.
They are first introduced by defining their purposes and
indicating the general rules that apply. Then the subpro-
grams are individually described. The input requirements
and the output to be expected are presented in great detail.
Several examples are worked out, complete with the control
cards, the input data, the computer output and the interpre-
tations of the results.

Note that the programming aspects of the work are not
included in the presentation. Reference 1, the provenance
of most of the subprograms that constitute the LINCON library,
must be consulted in that regard, along with the actual
listings of the subroutines. Also note that reference 1
can be used as an alternative source of information in
using the subprograms.

However, Appendix A explains how the LINCON data sets
were created and gives the job control cards reguired to
modify, verify or erase the data sets. Information on how
to recreate the library, should it become necessary, are given
as well. Finally, Appendix B specifies the references from

which the worked examples were taken.

14




IT. COMPUTER PROCEDURE

The programs and subprograms described in [l], or modified
versions, together with a few locally written programs were
assembled in a load module to form a subroutine library. A
private user disk space was allocated on Disk02 of the Naval
Postgraduate School IBM/360 computer to hold the partitioned
data set and library procedures were defined and cataloged so
the library could be accessed by any computer user under OS
Batch. The details on how to access the library and use the
subprograms and subroutines are presented in the following
paragraphs and a complete description of the data set, along
with pertinent computer procedure information, is given in
Appendix A.

The system was devised in such a way as to minimize the
need for programming and provide the user with a convenient,
flexible, easy-to-utilize tool for analysis and design of
linear control systems. The programs and subprograms were
kept as separate subroutines so one, or more, programs could
be executed as a single job. The following gives a detailed
description of the different methods of accessing the library
as well as the cards necessary to run the programs under batch
processina. For convenience, the major steps of the proce-
dure are also reproduced in Section III as part of the sub-

programs presentation.

15
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A. MODES OF OPERATION AND CONTROL CARDS

There are many different operating modes a user can
employ to access a given computer library. Of these methods,
three were determined to be most appropriate and are presented
hereafter. It is pointed out that these procedures only
apply to this specific set of programs, which was assigned the
name LINCON (for linear control). Also observe that each mode
implies the use of slightly different control card deck set
ups. These differences are essential to the proper operation
of the system under the selected mode of operation. Each line
must be meticulously reproduced on the computer card and the
order of appearance of the cards scrupulously respected.

1. Mode One

This mode aprlies when a user wants to execute only
one of the subprograms for either single or multiple runs.
Except for the subprograms named GTRESP, KALMAN and PRTLOC,
which require exterior subroutines, all subprograms can be
accessed using this method. Mode Two establishes the proce-
dures that deal with the three special cases enumerated above.
For Mode One, the control cards must be:

// (standard OS JOB card)
// ~EXEC,.LINCON
//LINK.SYSIN, DD *
~~INCLUDE,SYSLIB (member)
/*
//GO.SYSIN.DD, *

16




data deck as described in Section III

for the subprogram “"member”
/t
where "member" is the simple name defining a subprogram to
be executed. For example, "include syslib(SERCOM)" would
have to be typed on the appropriate card to access the sub-
routine library program called SERCOM.

2., Mode Two

The three special cases previously mentioned are
accessed using this mode of operation. A different library
procedure was created since GTRESP, KALMAN or PRTLOC might
very well require special functions or inputs that vary as
given parameters change. This situation does not significantly
complicate the procedure and greatly adds to the system capa-
bility. Further justification and explanation are given in
Section III along with the subprogram descriptions. Again
under this second mode, the programs are to be accessed one
at a time, either for single or multiple runs. The computer
card deck set up to be provided is:
// (standard OS JOB card)
// ~EXEC .LINCONF
//FORT .SYSIN.DD.*

FORTRAN deck of user supplied subroutine as

specified for GTRESP, KALMAN or PRTLOC
/*
//LINK,SYSIN DD .*

17
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~~INCLUDE~SYSLIB (member) ;
~~ENTRY ~member ;
/*
//GO.SYSINADDA*

data deck for "member" as described

in Section III.
/*

where member is the actual name of the subprogram
to be executed. In this case, it is either GTRESP, KALMAN
or PRTLOC.

For example, "include syslib(KALMAN)" on the appro-
priate card, followed by "entry KALMAN" on the next card
would cause the subprogram called KALMAN to be run.

3. Mode Three
This mode of operation permits the user to call more

than one subprogram while executing a single job. Since this

third option calls all the subprograms at the same time, a
large amount of computer memory is required. The user must
be aware that this iIncreases the turnaround time. Nevertheless
the method can still be very useful. For instance, a user who
is not in a hurry could utilize this set up to obtain the
solution to several simple problems which do not require
modification of some parameters.

At this point the user is reminded that great care
must be taken to correctly prepare the control and data decks.
With an increased turnaround time, errors become costly and i

very frustrating.

18




When it is decided to use Mode Three, the following
computer cards must be generated:
// (standard OS JOB card), TIME=5
// ~EXEC.LINCON, REGION.GO=350K

~~ INCLUDE.SYSLIB (MAIN)

/t
//GO.SYSIN..DD..*
MEMBER 1
data deck for member 1 as
described in Section III
VEMBER 2
data deck for member 2 as
described in Section III
$
/*

where MEMBER 1, MEMBER 2, etc., are the defining names
of the subprograms to be executed and start in column one.
Note that again, as explained in Section III, the data deck
pertaining to the same subprogram can be arranged either for
single or multiple runs. The dollar sign, $, is a stop sign
to be printed in column one. This dollar sign card must appear
Sfter the last data deck of each "member" to be executed

under Mode Three.

B. ERROR CONDITIONS
When running programs, it is rather disappointing if

results do not come out as expected. This in itself is a good

19
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reason to always verify one last time that the control cards
were punched correctly and the data deck was set up exactly
as specified. Nonetheless, both neophytes and veterans do
make mistakes and the purpose of this section is to outline
some of the most common errors and show how to identify and
correct them. The user must keep in mind that the error
conditions and messages presented below apply to the IBM/360
and were taken from [2] which is the only up-to-date source
of infofmation on the subject.

Before any attempt is made to correct an eventual problem,
the errors must be 'exposed'. This very important step is
too often jumped over, the user opting to guess directly what
went wrong. In order to save time and effort, one should pro-
ceed more logically. The user should always check the linkage
editor and job scheduler output to ascertain that the proper
actions indeed did take place. Any messages such as '-Step-
Go-Was Not Run Because of Condition Codes' clearly indicate
what operations were not carried out and direct the user to
the problem. Using these makes it much easier for the pro-
grammer to pinpoint the malfunction and take the appropriate
action. If no faulty indications appear in the messages out-
put by the job scheduler (IEF type messages), the linkage
editor (IEW type messages), the program producing (IEY) or
the object program (IHC) and the results obtained are still
suspected to be erroneous, the user then knows he should devote

his attention to the mathematics of the problem and revise
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the input data (i.e., the output obtained is not the result 4

of a 'computer error').

Some of the possible linkage editor, object program and F
program producing messages are listed below. These should
give the programmer a good idea of what to expect and how to
proceed. Experience has shown that even if only a minimum of
information is provided, the user greatly benefits from having
these simple explanations at hand.

1. IEW000 (control statement only)

This message enumerates all the control statements

passed to the linkage editor. INCLUDE and ENTRY cards are
listed for reference. It is not an error message.

2. IEW0132 ERROR - SYMBOL PRINTED IN AN UNRESOLVED

EXTERNAL REFERENCE

This indicates that the symbol printed to the right
of IEW0132 is a subprogram or subroutine which was not in the
specified load module library or other modules passed to the
linkage editor for processing. The user must make sure the
correct subroutine library was specified (i.e., LINCON or
LINCONF as required for proper mode of operation), and that
the subroutine name regquested was correctly spelled.

3. IEW0222 ERROR - CARD PRINTED CONTAINS INVALID INPUT

FROM OBJECT MODULE.

In this case, either some control cards were missing,
thus causing the editor to interpret wrongly the cards that
followed, or some of the cards were punched incorrectly. The

deck should be checked.
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4. IEW0342 - LIBRARY SPECIFIED DOES NOT CONTAIN MODULE.
The subprogram or subroutine name specified on the
INCLUDE control card was not found in the LINCON library.
The user must make sure the INCLUDE card was punched as b
follows:
INCLUDE SYSLIB (member)
where 'member' is the appropriate subprogram name.
5. IHC900I EXECUTION TERMINATING DUE TO ERROR COUNT FOR
ERROR NUMBER 217
IHC2171 FIFOS - END OF DATA SET ON UNIT 5
Here the computer stopped executing due to lack of
data. At that instant, the problem might have been completely
solved or not. It is advisable not to take any chances. Again
the data deck should be thoroughly checked to ascertain that
the cards were set up properly and the data deck incorporated
was really the one for the specified subroutine.
6. IHC215 CONVERT - ILLEGAL DECIMAL CHARACTER (decimal
character)
The computer found the given decimal character where
a number was expected. Either the data cards were improperly
set up, the subprogram name specified was incorrect or the
FORTRAN format specified was not adhered to. Remedial actions
should be taken accordingly.
7. IEY032I NUL PROGRAM
This message indicates that no exterior subroutine :

was provided when needed and that the computer considered all
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the data expected from this subroutine to be zero. Even if
this situation can sometimes be used to advantage, it is not
recommended here. The programmer should incorporate all
required subroutines in his deck. Note that this error can
only occur while accessing the library under Mode Two.

8. No error condition messages printed out but incom-
plete or no results were output by the computer. Here many
things could have gone wrong, but most likely one of the
following occurred:

= While operating under Mode Two, the ENTRY card was not
provided where required. The user must verify the program
cards for correctness.

- While operating under Mode Three, insufficient region
size was specified. The remedial action is then to increase
region size.

- While operating under any of the three modes and the
two conditions described above were not the cause, insuffi-
cient running time was allocated for the program. If the
CPU time indicated on the output and the one specified on
the JOB card matched, the user should then allow more time
for computation.

- If none of the above, an underflow or overflow condi-
tion may have occurred, causing the program to stop. In
this case the linkage editor and job scheduler output will
indicate a completion code - OCF. The user must verify the

data cards and make the appropriate corrections.




The error conditions listed above are obviously not the
only ones that can occur, but they are the ones a user is
most likely to come across while employing the subroutine

library called LINCON.
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III. THE LINEAR CONTROL PROGRAMS

A, INTRODUCTION

The previous section dealt with the control statements
and the card deck arrangements required to introduce the
computer jobs to the operating system and tell the latter
everything it needs to know about the input and output
requirements. This chapter introduces the theory necessary to
use the programs, presents a precise description of all sub-
routines and data cards and gives detailed examples taken
among problems that were solved on the computer.

1. OQutline

The subprograms are divided into three classes: the

transfer function subprograms, the time response and matrix
manipulation subprograms and the modern control subprograms.
The first set allows the user to obtain a root locus starting
from a block diagram or signal flow graph (RTLOC), the
roots of a polynomial and their locus (PRTLOC), the
Bode and Nyquist frequency plots (FRESP), the partial frac-
tion expansion of the ratio of two polynomials (PRFEXP) and,
finally, the roots of any polynomial (ROOTS). The second
group is composed of three subprograms which are provided for
determining the rational time response (RTRESP) and the
graphical time response (GTRESP) of linear feedback control

systems and for computing the determinant, inverse, charac-

teristic polynomial, eigenvalues, state transition matrix and




the resolvent matrix (BASMAT). The last group of subprograms
deals with optimal control design. It permits the user to
find the observability index of a control system (OBSERV),
to test for both controllability and observability (CONOBS),
to obtain the state variable feedback given some performance
criterion (STVAR), to determine the complete sensitivity
analysis of the closed-loop system poles variation as certain
parameters change (SENSIT), to design Luenburger observers
(LUEN) and serial compensators (SERCOM), to minimize a per-
formance index when some state variables are inaccessible,
to solve the Riccati equation to derive optimal control
Faramcterse 1ndwanntinacus ¥alman filters (RICATIj, £S compute = I
the gains of discrete Kalman filters (KALMAN), to evaluate
the feedback control gains for discrete linear regulator
problems, and, finally, to decouple multiple-input multiple-
output systems (MIMO). Table I conveniently summarizes the
above.

The purpose of each subprogram and a brief discussion
of the theory behind it are given in the subprograms presentation.

2. Input Format

The input format for each of the subprograms is com=-
pletely described with their presentation and must be referred
to in each case. However, since the same general input for-
mat is used for all the programs, it is appropriate to point
out some of the similarities and the conventions adopted.

For instance, to make it easier to remember, most of the

groups of data cards have the same arrangement.




TABLE I - The Linear Control Subprograms

Mode of

Name Purpose Operation Class

RTLOC To plot the root of a One or B
polynomial equation Three

1 starting from a feed-

back control system
block diagram.

PRTLOC To plot the root locus Two B
of a characteristic
polynomial.

FRESP To obtain and plot the One or A/B
frequency response of a Three

rational transfer

, function over a

. - e~ re- e e e-specified rangeof”- - - *
- frequencies. Both Bode

and Nyquist diagrams can

be plotted.

PRFEXP To perform the partial One or A
fraction expansion of a Three
rational function.

ROOTS To find the roots of a One or A
polynomial of order less Three
than or equal to twenty.

BASMAT To compute the determi- One or A
nant, the inverse, the Three
characteristic poly-
nomial, the eigenvalues,
the state transition
matrix, and the
resolvent matrix from
a given matrix
A (NxN).

! RTRESP To determine the rational One or A
time response of a system Three
(in closed-form).

27




TABLE I (Continued)
Mode of
4 Name Purpose Operation Class

GTRESP To obtain the graphical One or A/B
time response of a Three
system for a specified
input.

OBSERV To determine the One or A
observability index for Three
a linear system.

CONOBS To check for both One or A
observability and Three
controllability of a
linear system.

SENSIT To study the closed~ One or A/B
loop poles variation Three

e- WY weeeoe wwe - m@fe.a dinear fevxdback te e 0 )
system.

STVAR To calculate the One or A
controller gain and Three
feedback coefficients
to achieve a desired
closed-loop transfer
function. Also computes
the plant transfer
function, internal
transfer functions and
determines Hg (s), the
equivalent Sngle- '
feedback element.

LUEN To design Luenberger One or A
Observers to achieve a Three
desired closed-loop
transfer function.

SERCOM To design a series One or A
compensator to achieve Three

a desired closed-loop
transfer function.
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TABLE I (Continued)

Mode of
Name Purpose Operation Class
RICATI To solve the differential One-or A/B
Riccati equation to Three
determine the optimum
control gains for state-
regulator problems and/orxr
the continuous Kalman
filter gains.
KALMAN To determine the discrete Two A
Kalman filter gains.
STREG To evaluate the discrete One or A

feedback gains of linear Three
regulator problems.

MIMO To decouple an Nth order One or
- ~« =+ -system with ¥ inputs and "*Three "~ * -- - °°
M outputs and place the
closed-loop poles of
each decoupled sub-
system at specified
locations.

t
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a. First Data Card

The purpose of the first data card of any of the
subprograms is to identify the problem for future reference
and for output data. A maximum of twenty alpha-numeric
characters (except $) can be used, starting in column one
(format SA4). On this first card, the user also normally
defines the system order and the dimensions of the various
matrices (format I2 for each number to be entered). Note
that the dollar sign $§ has been defined as a STOP and must
never be used as problem identification.

b. Matrices

Matrices are entered one row at a time either in
" their o.rig'i.n;l. forx.nh_o‘r t.ranszaéséd: a.s sg;;c.i;;.i.ed.. Tl;e .i.np;.lt ’fo;ﬁ;t
table presented with each subprogram indicates the correct form to
use. The vectors are always defined using lower case letters
while other matrices are identified with capital letters.
The matrix elements are punched in ten-column fields (format
8E10 or 8F1l0), thus a maximum of eight numbers can be given
per card. If the order of the system is greater than eight,
two cards are needed for every row.

An example will demonstrate the procedure. Assume

that the A and b matrices are:

3.19 0.00 -10.11 1.0
A = 2.45 6.40 - 0.50 b = 0.0
1.00 -9.14 6.75 5.
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The given A and b matrices are entered using an 8F10.3

format as follows:

card columns 1 11 21
3.19 0.0  -10.11
A 2.45 6.4 - 0.5
1.0 -9.14 6.75
bT 1.0 0.0 15.2

? c. Polynomials
The polynomial data can be entered in two differ-

ent formats referred to as P mode (polynomial form) and F
. . - > ® - aq - - - v . @ - -

ctored form). If P mode is selected, the letter P

- L 4 iy -

|

r ST ﬁode (fa
(format Al) followed by the degree of the polynomial (format

I2) are entered on one card. The coefficients of the polynomial
are placed on the next card(s) each in ten column fields

(format 8F10 or 8El0). The polynomials are always presented

in ascending order, the constant term given first and the
coefficient of the highest term assumed to be unity. In other
words, the last coefficient entered will always be interpreted
as being 1.0, thus can be entered either as ‘'1.0' or as a
blank. Again an example best illustrates the principles.
The given four polynomials are entered using an
8F10.3 format:
(1) Polynomials:

(1) 2 + 4s + s

2 3 4

{(ii) s + 58° + 63~ + s




(iii) 1. (highest degree coefficient
of a zero order polynomial)
(iv) 4 + 82+ s+ 3% 4+ &8
{(2) Computer data cards:
card 4 11 21 31 a1 51 61 71
colums
P02
2.0 4.0 1.0
P04
0.0 1.0 5.0 6.0 1.0
P00

l.o

4.0 0.0 1.0 0.0 1.0 0.0 3.0 0.0

If it is desired to enter the polynomial in
factored form, then the F mode is chosen. This choice is
indicated by placing the letter F (format Al) in the first
column followed by the degree of the polynomial in the next
two (format I2). The factors are then entered one per card,
the real part in the first ten column field and the imaginary
part in the next ten columns (format 2E10 or 2Fl0). An
unusual convention was picked to enter al} the possible factors.
The user must be careful and make sure his notation agrees
with the following:

(1) The real part of the root is entered as

positive if the factor is in the left half plane.
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! (2) The real part of the root is entered as

negative if the factor is in the right half plane.

i, (3) Only one of the complex conjugate roots is
entered and it must be with the one with the positive
imaginary part.

{4) If the polynomial is a constant, it must
equal 1.0 and be entered in the P mode as shown below.
Examples covering many possibilities are shown next.

Factored polynomials:

(1) (s + 3) (s - 1)

(ii) s(s +4)(s+ 1+ 3)(s+1-3)

(iii) 1.0

- o “ e~ @ -~ . -. o= L]

(v)" (8™ 1) (s — 2 4+ 355)(s-2=195) (s +3) (s + 3)

- -e L e - - . L] v .

Computer data cards:

Fo02

i) 3.
-1.
Fo4
0.0
ii)
4.0
1.0 1.0
P00

iii)
1.0
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(iv) =2.0 5.0

3.0
3.0
One good way to remember how toc work around this
confusing notation is to always enter the real parts as they
appear in the factored polynomial and include the positive
imaginary part only. 1In other words, one can analyse any

situation in the following manner:

where the circles indicate the numbers to be punched.
d. Multiple Runs

One last common characteristic of the input data
is that one or several data decks pertaining to the same
subprogram can be stacked and run as a single job. In other
words, one complete data deck is prepared for each problem
but the decks are all put one on top of the other and read in
to the computer preceded only by one set of control cards.

The user must realize, however,that this feature
implies more runs to be performed in a single job and thus
the time limit to be specified on the JOB control card must

be estimated accordingly.

34

(8 +0) (+.3) (-1 ds & Lok j& }4mt 1 - 33)




3. Output Format

The output of all of the subprograms is quite com-
prehensible and need not be explained. Nevertheless confusion
may arise due to certain factors that are commented upon here.
For the matrices, the same rules as for the input apply:
vectors are listed out as transpose matrices and all other
types of matrices are presented one row at a time. For
convenience, polynomials are always output both in polynomial
and factored forms no matter how they were provided as input.
As for the input, the coefficients appear in ascending order,
the constant term first. In factored form, the roots are
listed with their normal sign convention; the left half
plane “rdots “are fMlegafive and those in thectitht” haif plams*
positive.

Hence there is a sign inversion between the input

and the output for the factored case.

B. THE TRANSFER FUNCTION SUBPROGRAMS

This set helps the user to analyse or design feedback
control systems by providing a means of obtaining quickly the
roots locus, Bode diagrams, Nyquist plots, partial fraction
expansions and polynomial roots.

l. Root Locus (RTLOC)

This subprogram calculates and plots the roots of the

equation

l1+KG(s) = O
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where G(s) is a rational function of the form

The user must provide N(s), D(s) and a range of value for
K. Since a choice of two ways to vary K from minimum to
maximum gain exists, an option card is also required.
a. Input
The observations and the table presented below
should be sufficient to use the subprogram which can be
called under Mode One or Mode Three (as described in Chapter

II):

.
- * ~ ¢ s+t @ - O ¢ v *

(1) " N(s) éhn'be‘{ﬁput either in P form or F form

(2) D(s) can be input either in P form or F form

(3) K values must be all positive or all negative. If
both are desired, two separate runs must be made. Also, the
maximum gain value cannot be zero.

(4) An option card must be included to indicate whether or not
a particular region of the root locus is to be drawn (zoom capa-
bility). A blank option card implies nooption is desired. Note
that selecting a specific region improves the accuracy of the plot.

The last card tells the computer to plot only

the roots locus in the rectangle in the s plane defined by:

g . < Rels] <o

min max
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Wein < Im(s] < w

max

as illustrated in Figure 3-1.

Vg A
“max f""?
V /]
f "////%max
) ! :::i>
>
N
N
“min
cmir} - .'”r e & - ?
o
Standard Magnified

Fig 3-1 Magnified and Standard Root Locus

Thus a standard root locus plot is obtained by leaving the
option card blank, while a magnified root locus is plotted
by punching a "1" in the first column and specifying the
minimum and maximum values of ¢ and w. The input formats
for RTLOC are given in Table II.
b. Output

The problem identification is given, followed by

the numerator and denominator polynomials, both in factored

and 'ascending coefficients' form, and the minimum and maximum
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- N
Entry Input Description Format
1 Problem Identification 5A4
2 letter P or F (for P
form and F form),
Order of N(s) (< 10) Al, I2
3 Enter N(s) in format 8E10.0
specified on previous
card
4 Letter Por F (for P Al, I2
form and F form),
Order of D(s) (< 10)
5 Enter D(s) in format 8E10.0
specified on previous
card
- . & .. Minimum.value.of gain, . .- : B8ELD.Q.
maximum value of gain
(# 0)
7 No option = blank card I1, 9X,
6ption #0 8E10.0

minimum value of g,
maximum value of o,
minimum value of w,

@aximum value of w

Table II - Input Format Table for RTLOC

1-20

1, 2-3

1-10, 11-20,
etc.

1, 2-3

1-10, 11-20,
etc.

1&’107 .’.l-ZQ.~ - - - - . -
1, 11-20,
21-30, 31-40,
41-50

Columns Used




L.

gains. The roots' real and imaginary parts are then listed
as the gain varies from its minimum to maximum value.
Finally the root locus plot is printed out. Note that the
graph produced has square grids so that the true angles can
be measured.

This is normally a class B program and time = 2
should be specified on the JOB card.

c. Example

Obtain the root locus of the following feedback

control system:

A 4

- : 2 (g% 3

52+ 4s + 5
3 2
S” +7s8 +20s +50

Fig 3-2 Feedback Control System for RTLOC Test.

The equation for which the roots are to be found is then:

2
1+ K 2(sd-l)(g +4sz+5) = 0
s“(s+3)(s” + 78 + 20s + 50)




It agrees with the RTLOC structure so one can proceed further.

N(s)

(s+1)(s+2+31)(s+2-731)

and

2 3

0+ 0s+ 150s° + 110s 6

D(s) +41s¥+ 108 + s

Here it is easier to enter N(s) in factored form and D(s)
as an ascending polynomial.

As a first guess, the range of variation of the
gain is chosen to be from 0.0 to 100.0 and since the expected
plot is unknown, no option is taken.

This completes the work. The computer does the
rest provided the cards are punched as follows:

// (standard 0S JOB card), TIME=2
// ~EXEC.LINCON

//LINK.SYSIN.DD.*

~~INCLUDE ASYSLIB (RTLOC)

/*

//GO.SYSIN.DD.*

RTLOC TEST

FO3

1.

2. 1.

P06

0.0 0.0 150. 110. 41, 10.

40

e i 111 b

A st m il Sl bk et ke b maee b =




.,‘r___._._----==;~.‘ e

0.0 100.
(blank card)
/*

The results appear in Figs. 3-3A and 3-3B. Note
that the user should mark the open-loop poles and zeroes for
easier interpretation.

2. Root Locus (PRTLOC)

As the name indicates, this subprogram is a modified
version of RTLOC. It calculates the roots of a polynomial
and plots them. The method to input the data differs slightly
but the ultimate goal remains the same.

a. Input

This subprogram can only be used under Mode Two
of operation. The coefficients of the polynomial must be

entered using a simple subroutine called RPOL(C,G) which must

be typed as follows:
SUBROUTINE RPOL(C,G)

DIMENSION C(20)

(]

c(l) fnct (G)

c(2)

fnct (G)

END

where n = order of the eguation.
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Figure 3-3A Root Locus Test - Numerical Output
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C(l), «..C{n+l)

coefficients of the polynomial, in ascending

order. Note that the coefficient of the
highest order term C(n+l) must be 1.0 and

need not be entered.

fnect (G)

defining coefficient equation in terms of

G, the gain. The function could very well

be a constant only.

The remaining data, i.e., the problem identifica-

tion, range of gain values and option,are entered as follows:

ENTRY Input Description Format
1 Problem identification, 5a4,

Order of the polynomial, I2

2 minimum value of gain, 8E10.0
maximum value of gain
(# 0)
3 {no option = blank card} 1Il1l, 9x,
option # 0, 8E10.0

minimum value of g,
maximum value of o,
minimum value of uw,

maximum value of w.

Columns Used
1 ~- 20
21 - 22

1-10, 11 - 20

l, 11-20, 21-30, 31-40
41-50

Table III - Input Format Table for PRTLOC

Here again, the gain values must be either all

positive or all negative and the maximum gain cannot equal

zZero.
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The first card, in addition to the usual problem
identification must contain the nolynomial order in columns
21-22.

The last card is used to indicate whether or
not a portion only of the root locus is to be refined and
plotted. 1If the option is selected, a number greater than
zero is punched in the first column, followed in columns
11-50 by the parameters defining the rectangular portion to
be blown up (see example). If this option is not desired,
the card is left blank. Note that this version permits us
to find the roots of any characteristic equation with a single
varying parameter G.

b. Output

The problem identification and the minimum and
the maximum gain are first listed out for future reference.
Next, the root values are given as the gain varies and the
root locus plotted. The execution time to be included on the
JOB card should be "time = 2".

c. Example

While trying to solve problem 7.26 in Shinners
[3], one comes across the following characteristic equation
for part of the system:

4

st + 9.15¢3

+ (1.32+2ox2)s2 + (26K, - .15)s + (6K, +0.675) =

At this point the root locus is desired to determine what

value of K2 is required to satisfy some criterion. Since
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the characteristic equation is specified explicitly, PRTLOC
is selected.

First the coefficients are sorted out and written
as functions of G where G is equal to K2.

Cc(l) 0.675 + 6.*G

s**Q coefficient

s**] coefficient : C(2) -0.15 + 26.*G

s**2 coefficient : C(3) 1.32 + 20.*G

9.15

s**3 coefficient : C(4)
Note that the coefficient of the highest order term is always
taken as 1.0 and need not be included. The above data is to
be entered by writing the subroutine RPOL(C,G).

The order of the equation is 04. The range of
gain values to be investigated is from 0.0 to 20.0 and since
no refined plot is desired at this point the last card is
a blank card.

The following cards then constitute the entire
deck to be input to the computer:

// (standard O0S JOB card),TIME=2

// ~EXEC .LINCONF

//FORT.SYSIN.DD.*
SUBROUTINE RPOL(C,G)
DIMENSION C(20)
C(1)=0.675+6.0*G
C(2)==-0.15+26.0*G
C(3)=1.32420.*G
C(4)=9.15
RETURN

END
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/*
//LINK.SYSINADDA*

~~INCLUDE~SYSLIB (PRTLOC)

~~ENTRYAPRTLOC

/*

//GO.SYSYNADD. *

PRTLOC TEST ONE 04

0.0 26.0

(blank card)

/*

The results obtained with this first run as are shown in Figs.
3-4A and 3-4B. However they do not permit us to evaluate the
gain precisely enough and a second run is made, this time
using the option. The rectangular portion where magnification

is desired is defined by:

Omin = -5.
max ° 3.
“min = “~1
Ynax = -

Note that this option not only concerns the plotting but also

produces a larger number of gain values. Thus, in order not
to have tobo many values listed out unnecessarily, it is good
practice to re-specify the range. It was decided to change

it to vary from 0.0 to 10.0.
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Figure 3-4A PRTLOC Test One -~ Numerical Output
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4

Since the characteristic ecuation did not change,
only the data deck is to be modified. These last three
cards are given below.

PRTLOC,TEST TWO 04
0.0 10.0
1 -5.0 5.0 -1.0 5.0

This magnified portion of the root locus is

presented in Fig. 3-5A and 3-5B

3. Frequency Resnonse (FRESP)

This subprogram determines the frequency response of

a rational transfer function

and plots the response in the form of a Bode or/and Nyguist
diagram, as specified.
a. Input

The problem identification, the gain and the two
polynomials N(s) and D(s) are entered followed by the minimum
and the maximum radian frequency values, the number of fre-
quency values to be used (smaller or equal to 500), the inter-
polation and discrete value options, the Bode plots and the
Nyquist diagrams options and, only if required, the discrete
frequency values.

It might look complex at first, but the subprogram
is very simple to use and the results obtained are quite good.

The routine is accessed under Mode One or Mode Three. The
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Entry

1
2
3

8

(if and
only if
optionz:
001

the procedure to be used.

Input Description
Problem identification
The gain K

letter P or F (for P form
or F form), order of
N(s) < 10

Enter N(s) in format
specified on the previous
card

letter P or F (for P form
or F form), order of
D(s) < 10

enter D(s) in format
specified on the
previous card

minimum radian frequency (#0),
maximum radian frequency,
number of frequency values
to be used (<500)
option I: 1logarithmic
interpolation

= 000
discrete values

supplied = 001
linear interpolation = 002

option B: Bode plot = 000
no Bode plot = 001
option N: Nyquist plot = 000

no Nyquist plot
= 001

discrete frequency values

Tabie IV - Input Format Table for FRESP
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Format

5A4

8E10.0

Al,I2

8E10.0

Al, 12

8E10.0

2E10.0

I3

I3

I3

8E10.0

input format table and the example that follows demonstrate

Columns Used
1-10

1-10

1, 2-3

1-10, 1l1-20,
etc.

1, 2-3

1-10, 1l1-20,
etc.

1-10,
11-20,
21-23,

24-26,

27-29

30-32

1-10, 11-20,
etc.




Here the option card is a bit complex, but it

provides great flexibility. The following ideas should help

hatnsmammitstupeympmsier ce Dt ¢ : ~ e v e

(1) The first three entries specify the range and the

c.e L e . . clpah . .

number of data points for the Bode and/or Nyquist plot. One
must recall that the Bode magnitude plot is log-log; the Bode
phase plot is log-linear (angles in degree) while the Nyquist
is a polar plot. Thus, minimum and maximum radian frequency
values should be carefully chosen. For example, w_._ = 0.01

min
and Wrax = 100 could be a good choice in a given problem
while being absurd for another one.
(2) Option I specifies the type of interpolation to be used
to generate the values between the minimum and maximum frequency.
If Option I = 000, logarithmic interpolation is used to

select the frequency value. Either plot

can be obtained while specifying this option.

!

If Option I 001, the user must enter on the following

cards the fregquency values for which
he wants G(jw) to be evaluated. The
number of frequency values must

again be less or egqual to 500. No {
plot can be obtained when this option

is selected, only tabular outputs.

If Option I = 002, linear interpolation is used to select
the frequency values for which G(jw)
is to be computed. Only the Nyquist
plot can be obtained when this option

is used.
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(3) Option B indicates whether or not Bode diagrams are

to be drawn.

If Option R nnn , Rrde plnte 1117 he aurput . wiheseas v .

!i--u“

If Option B = 001, Bode plots will not be output’
{(4) Similarly, option N is used to specify whether a

1 Nyquist plot is desired or not.

If option N 000, it is desired
If option N = 001, it is not desired.

(5) The options card is not followed by any card except
when option I is equal to 001. If this is the case, the
frequency values must be entered using an 8E10.0 format.
Note that an option card containing only the minimum and the

maximum fregquency values and the number of points to be

evaluated indicates that both Bode and Nygquist plot are

desired.
b. Output

The problem identification, the value of the gain,
the coefficients of the polynomials N(s) and D(s) as well as
their roots are listed for reference. Next, the radian fre-
guency, the real and imaginary part of G(jw), the magnitude
|G(jw) |, the magnitude in db, the phase in radians and the
phase in degrees are printed out in tabular form for the
indicated number of frequency values (smaller or equal to
1 500).
If option B = 000 has been selected, the magnitude

and phase Bode diagrams are given. Note that the phase angles

are always normalized to lie between -180° and +180°.
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If option N has been requested, the Nyquist

diagram is plotted with the points linearly, or logarithmically,

4 . . . VIR A
spaced out.

Normally the CPU time required to run the program
is less than 20 seconds (class A).

c. Example One
The Bode plot for the loop transfer function is to

be obtained for the following system:

+
[ 60 (s +50)
_’%? —> s(s710) ->
1
s+ 20

Fig. 3-6 Compensated Control System for FRESP Test

The first step is to define G(s). Here it is simply

2

(s + 50) ]

(s) _
= 80T 10 (s 2,

(s)

G(s) = 'K

o

The gain is 60 and since both N(s) and D(s) are already
factored, they can best be entered using F form. The minimum

and maximum frequencies are arbitrarily chosen to be 0.1 and

100, respectively. The number of frequency values for which

e e ae

G(jw) is to be evaluated is 50. Since a Bode diagram is

desired, option I must equal 000 (logarithmic interpolation)

U




G, St A

and option B also equals 000.

is not desired and option N is entered as 00l.

The control cards and-data deck fo run the sub-

program are then:

// (standard OS JOB card)
// ~EXEC .LINCON
//LINK.SYSIN.DD.*

~ INCLUDE .SYSLIB (FRESP)
/*

//GO.SYSIN DD *
FRESP TEST ONE
60.

FOl

50.

FO03

0.0

10.0

20.0

0.1 100.

/*

050000000001

The Bode diagrams are shown in Fig. 3-7 (A-C). Note
that the phase versus frequency diagram presented is not in
error but simply due to the fact that the angle values are
normalized to be within -180 and +180 degrees.

useful since it permits one to rapidly determine where the

-180° crossing occurs.
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In this case a Nyquist plot
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Figure 3-7B FRESP Test One - Bode Plot (Phase)
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d. Example Two

The problem to be solved now requires that only
a Nyquist plot be obtained fqQr the following goep-loQr = .o

transfer function of a compensated system:

G(s) = (s +0.7)(s +0.15)20
(s+7)(s+0.015)(s+1) (s +2)s

The frequency range is selected to be from 0.2 to 10.0 and
calculations are to be carried out for twenty-five frequency
values using logarithmic interpolation. The:computer deck is
then:

// (standard 0S JOB card)

//~EXEC. LINCON

//LINK.SYSIN.DD.*

~~INCLUDE .SYSLIB (FRESP)

/*

//GO.SYSIN.DD.*

FRESP TEST TWO

20.0

F02

-.15

0.7

FO05

0.0

1.0

2.0

0.015

-




R e BRI

7.
0.2
/*
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10.0 025000001000
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Results are shown in Fiés:v3:hA aﬁd.s-EB:

Partial Fraction Expansion (PRFEXP)

This subprogram performs the partial fraction

expansion of the ratio of two polynomials of the form

N(s)

G(s) = K D(s)y '

a. Input

(degree of N(s)

degree of D(s})

- w__*—-::====!IIIIIIII!Ill!lEmEn-ul.-!..---.--1r-“

<

The problem identification, the gain value K and

the polynomials N(s) and D(s) are entered according to the

following input format table:

ENTRY
1
2

Input Description
Problem identification
gain value X

letter P or F (for P form
and F form), order of
N(s) <10

enter N(s) in form specified
on previous card

letter P or F (for P form
and F form), order of
D(s) < 10

enter D(s) in form specified
on previous card

Format

544

8F10.3

Al, I2

8F10.0

Al, 12

8F10.0

Table V - Input Format Table for PRFEXP
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Columns Used
1-20

1-10

l, 2-3

1-10, 10-11,
etc.

l, 2-3

1-10, 10-11,
etc.
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! D(s) must not have multiple complex roots for the subprogram

to work. If it does, a message is printed and the problem

terminates at that point. Note that D(s) may have multiple
real roots though.
b. Output
The problem identification and the gain value are
listed followed by the numerator and the denominator in both
factored and unfactored forms. For the denominator,
each root value is listed once only with its multiplicity
indicated. Note that roots are considered equal if their real
and imaginary parts do not differ by more than 0.005. The
example presented in ¢, illustrates how to deal with multi-
plicity of roots in the interpretation of the results. The
residue matrix real and imaginary parts is then given.
This subprogram can be run as a class A job.
c. Example
The partial fraction expansions of the following

rational functions are to be performed:

20

(a)

656 + 7525 + 26452 + 285> + 57

2+s

2+4s+352+s3

(b)

N(s) and D(s) are entered using both the F and the P forms and
the partial fraction expansions of the two polynomial ratios can

easily be obtained in a single run by stacking the data deck.
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The computer cards are:

// (standard OS JOB card)
SUEmCEmON
//LINK.SYSIN .DD .*
~~INCLUDE .SYSLIB (PRFEXP)

/i‘

//GO.SYSIN . DD *

PARTIAL FRACTION A

20.

POO

1.0

P04

656. 752. 264. 28. 1.0
PARTIAL FRACTION B

1.0

FOl

2.0

PO3

2.0 4.0 3.0 1.0

/*

and the solutions are presented in Figs. 3-9A and 3-9B.

Interpretation of these results gives:

©0139 + j.0124 , .0139 - j.0124

(1) Partial fraction A = TSVESTIY] S+12-34.47

+ -.0278 + .16672
(s+2)

s+2
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k3
1

Note that the second residue appearing in the output belongs
2 s s

to (s+2)". If a multiplicity three had been the case, a

third residue would have been the numerator of a cubic.

=.5+3.5 , -.5-3.5 . _1

(2) Partial fraction B = SIS S+I-3 St1

5. Roots of a Polynomial (Roots)

This subprogram finds the roots of a polynomial of

degree less or equal to twenty.

ittt

a. Input
The first data card contains the problem iaenti-
fication in the first twenty columns and the polynomial order i
in columns 21-22 (format I2). On the next card(s) the poly-

nomial coefficients starting with the lowest order term are

entered (format 8El0.0). These two entries are repeated for
every polynomial to be factored. Note that the highest order

term coefficient must be unity.

Entry Input Description Format Columns Used
1 Problem identification, 5A4 1-20
polynomial ordex I2 21-22
2 polynomial coefficients 8E10.0 1-10, 11-20,
in ascending order 21-30, etc.

(highest order term
coefficient being one)
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b. Output

The problem identification and the polynomial

coefficients are listed for reference.
imagirary parts are then printed.

¢. Example

The roots real and

The following polynomials are to be factored:

s + s + 1252 - 58 + 1

The computer cards are then:

// (standard 0S JOB card)

// ~EXEC.LINCON
//LINK.SYSIN,.DD, *

~ ~ INCLUDE.SYSLIB(ROOTS)

/*

//GO.SYSIN.DD. *

Roots test one 03

1.0 0.0 0.0 1.0

Roots test two 04

1.0 -5.0 12.0 1.0 1.0
Roots test three

0.0 1.0 1.0 0.0 0.0 1.0

/*
The result is shown in Figure 3-10.

C. TIME RESPONSE AND MATRIX MANIPULATION SUBPROGRAMS

These three subprograms permit a user to analyze linear

control systems for rational and graphical time response and

69
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also provide matrix manipulation to easily solve for deter-
minants, inverses, state transition and resolvent matrices,
eigenvalues and characteristic polynomials.

The control system must be linear and represented in state

variable form as [1]

x(t)=A x(t) + b u(t)
T
u(t)=K[r(t) - k™x(t)]
y(t)=c x(t)
where u(t), r(t) and K are scalar and the system order is less

or equal to ten. In block diagram form, the matrix system can

be represented as

ult) x(t) y(t)

+
r(tsgg | axm;dﬂar | b [ _______i:{:g:
Bs

EK

Fig 3-11 Linear Control System Block Diagram.

The diagram readily shows all the elements to be provided for
the study of any given system. For instance one can view that

setting ET = 0 gives an open-loop system and that unforced sys-

tem analysis can be done by simply letting r(t) = 0.




1. Basic Matrix Manipulation (BASMAT)

This subprogram is used to perform various calculations
associated with the plant matrix A of a given linear control
system. It is a class A job and must be run under Mode One
or Mode Three.

a. Input

The problem identification and the dimension of A
are given on the first card. Next the A matrix is entered,
one row at a time using an 8El0.5 format. Thus, if the dimen-
sion of the matrix is eight or less, one row per card. Other-
wise the 9th and/or 10th elements appear on a second card and
the rule becomes one row per two cards. The last card indi-
cates what matrix operations are to be performed. The key to

obtain the proper results is explained after the input format

table.
Entry Input Description Format Columns Used
1l Problem identification 574,12 1, 2-3
dimension of A(N < 10)
2 A(N x N) matrix 8E10.5 1-10,11-20,etc.
(one row per card
for N < 8; one row per two 8E10.5 1-10,11-20,etc.
cards for N > 8)
3 option det 0, determinant Il 1,
desired
1, determinant Il

not desired

option inv 0, inverse desired Il 2,

1, inverse not
desired
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Entry Input Description

option phi(s)l 0,
1,

option C.E. 0,

1,

option eigen 0,
1,
option phi(t) 0,
1,

b. Output

(1) det (é) - a scalar

~

Format Columns Used

¢(s) desired I1 3,

¢ (s) not
- desired
characteristic Il 4,

polynomial
desired

characteristic
polynomial
not desired

eigenvalues Il 5,
desired

eigenvalues

not desired

¢(t) desired Il 6.

¢ (t) not
- desired

Table VI - Input Format Table for BASMAT

Thus, a zero indicates that the computation is desired while

a number from 1 to 9 informs that the listed operation is not
to be performed. Six zeros or a blank card would result in an
output that contains the é matrix determinant, inverse, resolvent,

| characteristic polynomial, eigenvalues and state transition matrix.
The problem identification and the A matrix are
listed first. Then the result of each operation selected on

the option card is printed as follows:

(2) A™! - a matrix presented one row at a time

(3),(4) resolvent matrix and characteristic polynomial.

lots) & (s1-2171

,which is called the resolvent matrix,

is the Laplace™transform of the state transition matrix

o(t) = elt,

-~




The coefficient matrix of the numerator of the
resolvent matrix appears first, followed by the character-
istic polynomial in ascending powers of s.

(5) Eigenvalues - listed indicating the real and imaginary
parts

(6) Time domain state transition matrix - ¢(t) (see part c,
example two).

The subprogram is restricted by the fact that g(t)
cannot be calculated if eigenvalues are multiple. If a situa-
tion where the state transition matrix is requested where
eigenvalues are not simple, a message is printed (see part
c, example one) and the computer goes to the next problem.
Note that eigenvalues are considered to be identical if their

real parts and their imaginary parts differ by less than
0.00S5.
¢c. Examples
(1) Example One
The resolvent matrix (sI - é)-l and the state

transition matrix ¢(t) are to be found for the plant matrix

o 1 0
a= (0 o0 1
0. 0 -2

Thus, the matrix has dimension N = 3. The options are set

equal to the following values:
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option det = 1
option inv = 1
option phi(s) =
option C.E. = 0
option eigen = 0

option phi(t) =

0

0

determinant value is not desired

inverse é-l is not to be calculated
¢(s) is desired

characteristic polynomial is desired
eigenvalues are to be computed

¢(t) is desired.

The computer card deck is then:

// (standard 0S JOB card)

// .EXEC , LINCON

//LINK.SYSIN DD, *

~~INCLUDE.SYSLIB(BASMAT)

/*
//GO.SYSIN DD, *

BASMAT TEST ONE 03

The computer results shown in Fig 3-12 can be interpreted as

0.0 1.0 0.0
0.0 0.0 1.0
0.0 0.0 -2.0
110000
/*
follows:

o(s) = 1

- (8™ +287)

2 ‘ 1 1
s“+2s s+2 1l s ;I
0 52+28 -8 = 0 1

2 s
0 0 s
0 0
L
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Figure 3-12 BASMAT Test One

76




The state transition matrix ¢ (t) cannot be obtained since the

eigenvalues are not simple.

(2) Example Two

This second example shows the complete

solution, i.e., determinant, inverse, resolvent matrix,

characteristic polynomial, eigenvalues and state transition

matrix, for a case where

2.0 2.2
A = 5.1 3.4
0.9 1.1

Since all the calculations are requested, the option card is

"eft blank. The card deck is
// (standard OS JOB card)

// .EXEC _LINCON
//LINK.SYSIN DD *

.. INCLUDE SYSLIB (BASMAT)

/*

//GO.SYSIN DD *

BASMAT TEST TWO 03

2.0 2.2 2.5
5.1 3.4 7.1
0.9 1.1 1.1

(blank card)
/*
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Results appear in Fig 3-13. Interpretation of these results
is fairly straightforward. For instance, the first term of

the resolvent matrix, ¢(s), is

s - 4.55 - 4.07
- 6.55° - 8.54 s + 0.049

and, similarly, the first term of the transition matrix,

¢(t), is

+0.0057t -1.13t +7.62t

¢ll(t) = (0.475e + 0.229%e + 0.296e )

2. Rational Time Response (RTRESP)

This subprogram may be used whenever it is desired to
obtain the time response in closed form [l] of a linear control

system described by the following set of equations:

x(€) = A x(t) + b u(t)
T

u(t) = Klr(t) - k" x(¢)]

y(t) = ¢ x(t)

The system can have any initial conditions x(to) but the scalar
forcing function r(t) must have a rational Laplace transform

such that

2
0

[r(t)] = R(s) = G

, Wwhere G is a constant,

9
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Figure 3-13 BASMAT Test TwoO
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and

2
+ a,s +a,s + ... + s

N(s)

a

D(s)

bo + bls + b252 + ... + S
with m > ¢ > 0.
Arrange the polynomials so the coefficients in the highest
order terms of both N(s) and D(s) are unity and select the input
gain G as required.

In addition to the above, it is necessary that the
total order of the system, i.e. order of D(s) plus dimension
of A be smaller than or equal to ten. This limitation is not
overly restrictive but must be taken into account when handling
large order systems.

a. Input

The system matrices, feedback coefficients and the
controller gain are entered immediately after the problem
identification and system order card. The A matrix elements
are presented one row at a time. The transpose control vector
QT, the output vector c, the feedback coefficients kl, k2'
k3, cees kn and the controller gain K are given using an
8F10.4 format.
Next the initial conditions xl(O), x2(0), ey

x_!7,, the input gain G and the numerator and the denominator

n
input polynomials are entered. Both N(s) and D(s) may be

entered in factored (F) form or unfactored (P) form and it is




noted that the degree of D(s) must be strictly larger than the
degree of N(s).

It is suggested that a signal flow graph, or at
least a matrix block diagram, be sketched before an attempt
is made to run this subprogram. It does not take long to do
so and much can be gained.

The execution time for the subprogram is less than

20 seconds for most cases (class A).

Entry Input Description Format Columns Used

1 Problem identification, order 5a4, I2 1-20, 21-22
of the system (N < 10)

2 plant matrix A (one row per 8F10.4 1-10, 1l1-20,
card 1if N < 8; one row per etc.
two cards 1f N > 8)

3 Control matrix pT(l x N) 8F10.4 1-10, 11-20,
(on one card if N < 8; etc.

two cards if N > 8)

4 Cutput vector ¢ (1 xN) 8F10.4 1-10, 11-20,
(on one card if N < 8, etc.
on two cards if N > 8)

5 feedback coefficients kl,k2 8F10.4 1-10, 11-20,
eeos k. (on one card if etc.

N < 8;"on two cards if N > 8)

6 Controller gain K 8F10.4 1-10
7 Initial condition x, (0), 8F10.4 1-10, 11-20,
%,(0), «-., x_(0) (bn one etc.

cdrd if N < 8, on two
cards if N > 8)

8 Input gain G 8F10.4 1-10

9 Letter P or F (for P form Al, I2 l, 2-3
or F form), polynomial
order 2 < M




Entry Input Description For.uat Columns Used
10 Enter N(s) in foro.tc 8F10.4 1-10, 11-20,
specified on the previous etc.

card.
11 Letter P or F (for P form Al, I2 1, 2-3

or F form), polynomial
order M < 10

12 Enter D(s) in format 8F10.4 1-10, 11-290,

specified on the etc.
previous card.

Table VII - Input Format Table for RTRESP

b. Output Format

All the information given as input is repeated
for reference. The polynomials N(s) and D(s) are presented
both in factored and unfactored forms.

The rational time response of each component of
the state vector x(t) and the scalar output y(t) are printed
in pseudo-matrix form. Here again a hypothetical example can
clarify the presentation. For a two-state problem, assuming

complex poles and a step input, the computer output would look like:

THE TIME RESPONSE OF THE STATE X (t)

THE VECTOR COEFFICIENT OF EXP (A)T * COS(B)T
11 %12

THE VECTOR COEFFICIENT OF EXP(A)T * SIN(B)T
X21 %22

THE VECTOR COEFFICIENT OF EXP(0.0)T

X

X33 32
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where X1 x12’ x21. x22, x31 and X35 are numbers. The result

! would be interpreted as:

xl(t) Xy, * exp(at) * cos(bt) + Xg1 * exp(at) * sin(bt) + x

31

]

: xz(t) X5 * exp(at) * cos(bt) + X55 * exp(at) * sin(bt) + X3
The procedure to obtain y(t) is the same. Note
that if more than one output y(t) is desired, the subprogram
must be rerun changing the ¢ matrix each time.
c. Example
The open-~-loop rational time response is desired

for

Y(s) _ .1923

X(s) s® + 2.346s + 3.846

The first step is to get the signal flow graph

and state equations.

.1923 l/s 1 1l/s 1

R(s)

Fig 3-14 Control System for RTRESP Test
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:El(t) = x,(t)

:Ez(t) = =3.846x)(t) ~ 2.346x,(t) + .1923u(t)
u(t) = ri(t)

y(t) = xl(t)

The data from the system is then:

g.q l1.a
A =
- -3.846 -2.346

fo.0 .1923]

(R
"

¢ = (1.0  0.0]
k' = [0.0 0.0
K = 1.0
x(0) = 0

The system time response in closed form is required

for a step input of magnitude 2. Thus

R(s) =

win
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and the data are

The control and data cards to run the program are as follow:

// (standard OS JOB card)

input gain

// ~EXEC_ LINCON

//LINK.SYSIN, DD *

~~INCLUDE, SYSLIB (RTRESP)

/*
//GO.SYSIN.DD,*
RTRESP TEST

0.0 1.0
~3.836 -2.346
0.0 0.1923
1.0 0.0
0.0 0.0
1.0

0.0 0.0
2.0

POO

1.0

FOl

0.0

/*

N(s)

D(s)

02
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The results shown in Fig. 3-15 are interpreted as:

xl(t) = =.1 * exp(~1.173t) * cos(l.57t) - .075 * exp(~1.173¢t)

* sin(1.57t) + 0.1

x2(t) >~ 0.245 * exp(~1.173t) * sin(l.57t)

y(t) = x,(t)

3. Graphical Time Response (GTRESP)

The subprogram is a slightly modified version of the
one presented by Melsa and Jones [l]. It still determines the

time response of the closed loop system

x(t) = A x(t) +bu(t)
T

u(t) = Klr(t) - k™ x(t)]

y(t) = c x(t)

with initial conditions §(t0) and displays the results both
in tabular and graphical forms. However, instead of having
all the desired plots drawn on one graph only, it also produces
one graph for every selected variable.

The subprogram solves linear systems. It is a Class
B job when graphical output is requested but reduces to a
Class A job when tabular ocutput only is to be listed. The
subprogram must be accessed under Mode Two and requires an

exterior subroutine to define the scalar forcing input r(t).
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Figure 3-15 RTRESP Test - Computer Output
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a. Input
The first element to be input is the forcing func-
tion r(t). A short defining subroutine must be written in
the following manner:
SUBROUTINE RFIND(T,R)
(FORTRAN statements defining r(t))
(Example: R = 2.5*T+SIN(4.2*T)
RETURN
END
Next the remaining parameters are entered as a data deck which
closely resembles the one for RTRESP. The problem identifica-
tion and system order (N < 10) are given on the first card.
Then the N xN plant matrix A, the single row matrix ?T, the
output matrix c, the feedback coefficient matrix ET, the con-
troller gain K and the initial conditions §(t0) are presented
as indicated on the input format table. The next-to-last card
specifies the time factors: the initial time, the final time,
the integration step size and the frequency of output are
given in an 8E10.0 format. The last card enumerates the
variables to be plotted versus time.
Here some specifics regarding the time specifications
and the variables to be plotted must be remembered.
(1) Common sense must be used when selecting the initial
and final time. Intelligent guesses should be made based on

experience and the system dynamics.




(2) The integration step size is also related to the system

dynamics. It should be small enough to give a precise solu-
tion but not excessively small as to increase the computing
time unnecessarily. As a rule of thumb one can start by

letting the integration step size be

(final time) - (initial time)

DT 1000.

(3) The frequency of output (FREQ) determines both the
number of points to be plotted in the total time interval and
the physical dimension of the graph. The formula to determine
the value of FREQ is

(final time) - (initial time)
(integration step size) (number of points to be plotted

FREQ =

(No. of time steps)/(No. of points plotted)

where the number of points to be plotted must always be less than
or equal to 100. Equivalently one can say that the plotting

is constrained by the equation

FREQ > (final time) - (initial time)
—~ (integration step size) (100)

This relationship is very important. It restricts the user
but also permits him to establish in advance the number of
points to be plotted per curve and the scaling of the time
axis. This is illustrated by the following example.

Assume that the initial time is 0.0, the final time

is 10.0 and the step size is 0.005. What value should be
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used for the frequency of output, FREQ? Using the rule

stated above,

(10.0 - 0.0) _
FREQ > Toosy(ro0) - 20

Thus the frequency of output must be greater than or equal to
twenty. Expecting a moderately oscillating time response, a
"number of points to be plotted” equal to fifty is decided

upon. Thus,

(10 - 0)

FREQ 1.005) (507

giving a sampling interval (S.I.)

"
o
L]
N

S.I. = (FREQ) (Step Size) = (40) (.005)

In summary, for this example, setting FREQ equal to 40 would
give an output of 50 points, each 0.2 seconds apart between
the initial value TI = 0.0 and the final value TF = 10.0
seconds.

Note that the physical dimension of the graph is
directly proportional to the number of points to be plotted.
Fifty points usually gives a good drawing and is suggested as
starting value.

(4) Approximate equations for the graph dimension are pre-
sented as extra information only. These do not help to solve

the problem but give an idea of what to expect:




dependent variable or y axis = 36 cm (fixed)

independent variable or t axis = (.318)x(number of points) cm

The last card of the data deck indicates what dependent varia-
bles are to be plotted. A maximum of eight graphs can be
output for every program run. If tabular output only are
desired, the last card is left blank. The variables for which
time responses are to be drawn are specified by giving the

symbol that corresponds to the desired variable:

Symbol Variable to be plotted Symbol Variable to be plotted
1 x1(t) 8 x8 (t)
2 x2(t) 9 x9 (t)
3 x3(t) S x10(t)
4 x4 (t) R error signal
5 x5(t) u controller input
6 x6 (t) Y output
7 x7(t) R forcing input

Table VIII - Symbol Indicating Variables
to be Plotted by GTRESP

where the error signal is defined as

e(t) = r(t) - y(t)

All the above is summarized by the following table:
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Entry

Input Description

Problem identification, order
of the system (N < 10)

Plant matrix A(N xN) (one row
per card if N < 8 or one row
per two cards i1f N > 8)

Distribution matrix bT (1 xN)
(one card if N < 8 or two
cards if N > 8)

Output vector ¢ (1 xN) (one
card if N < 8 Or two cards
if N > 8)

feedback coefficients k,, kz,
eess k. (one card if N é 8
o~ two cards if N > 8)

Controller gain K

Initial condition x. (ty),
X (to), evey X_(t_ )" (on one
cgrd if N <8 8r Bwo cards

if N > 8)

Initial time TI,

final time TF,

step size DT,

frequency of output FREQ

Any of the following symbols
in any of the first eight
columns of the card (maximum
of 8):

Y,R,U,E,1,2,3,4,5,6,7,8,9,A

Format

5a4, I2

8E10.0

8E10.0

8E10.0

8E10.0

8E10.0
8E10.0

8E10.0

8Al

Table IX - Input Format Table for GTRESP

b. Output

Columns Used

1-20, 21-22

1-10, 1l1-20, 1
etc.

l"lo, 11-20'
etc.

1-10, 1l1l-20,
etc.

1-10, 11-20,
etc.

1-10

1-10, 11-20,
etc.

1-10,

11-20,
21-30,
31-40.

1,2,3,4,5,6,7,8

The problem identification, A, bT, C, kT, K, x(to),

the initial time TI, the final time TF, the integration step

size DT and the frequency of output FREQ are printed out for

future reference.
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variables together with the control input u(t) and the output
y(t) are listed versus time. Finally, the graphical outputs
are given. As mentioned earlier, one graph is produced for
each selected variable. At the end of the run, a compact
solution is presented by plotting all the curves on a single
graph.

c. Example

An uncompensated system is described by

xl(t) Xy (t)

u(t)

x5 (t)

The system is compensated by feeding back both
states and the graphical time response is to be obtained for
initial condition only. The initial conditions are xl(O) = 10.0
and x2(0) = 0.0. The controller gain equals l.6.

The following diagram represents the complete

system:

+ x., (t) ‘

Fig 3-16 Feedback System for GTRESP Test




Since only the time response to initial conditions is required

for the problem, r(t) is set equal to zero. The system order

is two and

1 T
A = , b = [0 1} , ¢ = [0 0]
0 0 -
The feedback coefficient matrix kT = [1l. 1.]
The controller gain K = 1.6
The initial conditions 5(0) = [1l0. 0]

From the dynamics of the system, a final time of 10
seconds is chosen.

An integration step size of 0.02 is sufficiently small.

The time equations imply that

(10 - 0)
(.02) (100)

m
[S,]

(1) FREQ >

(2) 50 points are chosen to cover the ten second

interval so

(10 - 0)

FREQ = <7627(50)

10
(3) One value is going to be plotted every (DT) x(FREQ)
or 0.2 second.

(4) The estimated dimensions of the graph can be evaluated

as




- dependent variable axis = 36 cm

- independent variable axis = (.318) (50) = 15.9 cm
The variables to be plotted are u(t), xl(t) and xz(t).
All the above are entered as Specifiéd on the input format
table and the subroutine RFIND(T,R). The complete computer
cards set up is then:
// (standard 0S JOB card),PIME=2
// ~EXEC .LINCONF
//FORT.SYSIN DD ,.*

SUBROUTINE RFIND(T,R)

R=0.0
RETURN
END
/*
//LINK.SYSIN DD *

~~INCLUDE (GTRESP)

~~ENTRY .GTRESP
/*
//GO.SYSIN DD *
GTRESP TEST 02
0.0 1.0

0.0 0.0

0.0 1.0

0.0 0.0

1.0 1.0

1.6

10.0 0.0
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Results are shown in Fig. 3-17A-E

D. MODERN CONTROL SUBPROGRAMS

The following set of subprograms may be used to analyze
and design linear feedback control systems which are to achieve
a specified closed-loop transfer function.

This group of nine subprograms consists of: the supporting
subprograms OBSERV, CONOBS, SENSIT which provide the user
with a means of checking the observability and controllability
of a system and its sensitivity to parameter variations; the
subprograms STVAR, LUEN and SERCOM which help design optimal
linear control systems with complete or incomplete state
measurements; RICATI and KALMAN which find the feedback and
control gains necessary to optimize a given function either
for continuous or discrete systems; finally, MIMO which is a
computer aided technique to determine feedback control laws
for multiple-input multiple-output systems where the number
of inputs equals the number of outputs.

The subprograms SENSIT, KALMAN and RICATI are normally
Class B subprograms and require a "TIME = 2" specification on
the JOB card. All others are Class A. Except for KALMAN
which must be operated using Mode Two, all the subprograms

are accessed under Mode One or Mode Three.
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1.

Obsexrvability (OBSERV)

This subprogram determines the observability index of

the linear, time invariant, Nth order system

X(t) = A x(t) + B u(t)

y(e) = C x(t)

The observability index r of the above system is

defined (4] as the smallest positive integer for which the

matrix (¢, A'C, ..., (aT)

T)¥=1¢) has rank w.

a. Input

The problem identification, the order of the system

and the number of rows of the C matrix are entered on the first

data deck card.

Then the A matrix is presented one row at

a time followed by the C matrix, also one row at a time.

Entry
1

Input Description Format

Problem identification, 5A4
order of the system (N < 10), 2I2
number of rows of C (M < 10)

A (N xN) matrix (one row per 8F10.3
card if N < 8; one row per
two cards If N > 8)

C (M xN) matrix (one row 8F10.3
per card if M < 8; one
row per two cards if M > 8)

Table X - Input Format Table for OBSERV

Columns Used
1-201 21-22'
23-24

1-10, 1l1-20,
etc.

1-10, 11-20,
etc.




b. Output

The problem identification, and the A and the C
matrices are listed for reference. Then either "(A,C) is
unobservable"” is printed or the observability index is given.
(If the observability index equals N the number of states,
the system igs completely observable.)

c. Example
The following sethof matrices are to be checked

for observability condition

(1) é = 0 -1 1l and g = [1 1 0]
1 0 -
1l
1
(2) A = 0 2 1 and C =
- ~ 2 4
0 2

Here, both (1) and (2) are solved in the same run, placing the
data decks one on top of the other giving:

// (standard OS JOB card)

// ~EXEC..LINCON

//LINK.SYSIN.DD.*

~~INCLUDE .SYSLIB (OBSERV)

/*

//GO.SYSIN DD . *

OBSERV TEST ONE 0301
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A o,

-loo -2.0

0.0 -1.0

1.0 0.0

1.0 1.0 0.0
OBSERV TEST TWO 0302

2.0 1.0 0.0

0.0 2.0 1.0

0.0 0.0 2.0

0.0 1.0 3.0

0.0 2.0 4.0 )
/*

and the solution is shown in Fig. 3-18.

2. Controllability and Observability (CONOBS)

The subprogram is a modified version of OBSERV. It
is used to determine the observability index and check the

controllability of a linear, time-invariant control system of

the form
x(t) = A x(t) + B u(t)
y(t) = C x(¢t)
a. Input

The input is the same as for OBSERV except that
the gT matrix must be included. The input deck starts with
the problem identification card which also contains the system

order, N, the number of rows of éEL, and the number of outputs,
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Figure 3-18 Observability Subprogram Tests
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M. Next the A matrix (N xN), the gT matrix (L xN) and the

C matrix (Mx N) are entered one row at a time using an 8F10.4

format.
Entry Input Description Format Columns Used
1 Problem identification, 5A4, 1-20, 21-22,
system order (N < 18), 312 23-24, 25-26
number of rows of B™(L < 10),
# number of outputs (M < 10)
3
2 A (N xN) matrix (one row per 8F10.4 1-10, 11-20,
card if N < 8; one row per 21-30, etc.
! two cards if N > 8)
3 BT (L xN) matrix (one row 8F10.4  1-10, 11-20,
per card if N < 8; one row 21-30, etc.
per two cards If N > 8)
4 C (M xN) matrix (one row 8F10.4 1-10, 11-20,
per card if N < 8; one 21-30, etc.

row per two cards if N > 8)

Table XI - Input Format Table for CONOBS

b. Output
The problem identification and all three matrices
are output for reference. Then two sentences are printed
indicating whether or not the (A,C) system is observable
and the (A,B) system is controllable.
¢. Example

The following systems are to be tested for observa-

bility and controllability:

e o —etntsm T e -

o miminns e e



|
f

-2 0 1l
(1) %(t) = 0 -1 0 §(t) + 0 0 g(t)
-3 -4 -2 1 0
y(t) = xl(t)
2 0 1l
(2) i =
§(t) 0 -1 1l §(t) + 0 0 g(t)
3 0 -2 Q
ylt) = xl(t)

Here again, both solutions are obtained in a single run using

one set of control cards before the two consecutive data

decks.
For (1),
* -2 .0 l
6(3 x3) = Q -1 0
3 -4 -2
Q Q
BT(2x3) =
= 1 0 Q
c(1x3) = (1 0o 0]
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Thus system order N = 3, number of rows of é?L = 2 and the
number of outputs M = 1.
For (2),
-2 0 1
A(3x3) = 0 -1 1
-3 0 -2
0 by
B(2x3) =
N 1 0 1]
Clx3) = [1 0 0]

and the system is of order N = 3, with L = 2 and M = 1.
The control cards and data decks are then as follow:
// (standard O0S JOB card)

//~EXEC ALINCON

//LINK.SYSIN.DD,.*

~~INCLUDE ~SYSLIB (CONOBS)

/*

//GO.SYSINADD ~*

CONOBS TEST ONE 030201
-2.0 0.0 1.0
0.0 -1.0 0.0
-3.0 -4.0 -2.0
0.0 0.0 1.0
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TR

1.0 0.0 0.0

1.0 0.0 0.0

CONOBS TEST TWO 030201

-2.0 0.0 1.0
0.0 =-1.0 1.0
-3.0 0.0 -2.0
0.0 0.0 1.0
1.0 0.0 0.0
1.0 0.0 0.0
/*

The results are presented in Fig. 3-19.

3. Sensitivity Analysis (SENSIT)

This subprogram is used to obtain the root locus of
the closed-loop poles of the (single-input single output)

linear control system

x(t) = A

R

(t) + b u(y)

u(t) Gi{r(t) - §T§(t)], where G is a scalar,
as a single element of the plant matrix A,or the control
vector by or the feedback coefficients matrix ET,or the con-
troller gain K varies between some specified values. As
already mentioned, the subprogram studies the effect of a
single parameter variation and plots the result. 1If, for

the same system, it is desired to consider more than one

parameter variation the user indicates his choices by providing
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one option card per element to be varied and the computer
completes one root locus for each parameter. The end of a
problem is indicated by a blank card. After that card, a
data deck pertaining to other systems may be included if
desired.

Execution times for this subprogramare normally more
than 20 seconds. Thus TIME = 2 should be specified on the JOB
card. Mode One or Mode Three is to be used to access the
subroutines.

a. Input

The problem identification and the system order
(N < 10) are presented on the first card. Next the plant

matrix A (N xN) and the pT (1 xN) matrix are entered, followed

by the feedback coefficients kl' k2, . kn' and the controller

gain G. Then the option card is given, indicating the element
to be varied, the number of parameter values to be used, and
the minimum and the maximum values of that parameter. This
card, with the proper modification, is repeated once for each
element to be varied. F‘nally a blank card indicates the end

of the problem.
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Entry Input Description Format Columns Used
1 Problem identification, SA4 1-20, 21-22
order of the system (N < 10) I2
2 & (N xN) matrix (one row per 8F10.3 1-10, 11-20,
card if N < 8; one row per etc.
two cards If N > 8)
3 b’ (1 xN) matrix (one card 8F10.3  1-10, 11-20,
if N < 8; on two cards if etc.
N > 8)
4 kT (L xN) coefficients matrix  8F10.3  1-10, 11-20,
(one card if N < 8; two cards etc.
if N > 8)
5 Controller gain G 8F10.3 1-10
6
(repeat (1) element to be varied Al 1
this (letter A if the
entry once element is part of A,
for each letter B if the - ~
parameter element is part of b,
which is K if the element is
to be one of the feedback
varied) coefficients, G if the

element is the
controller gain)

(2) row number of the element 12, 2-3
if from A, b, or k.
Otherwiseé set equal to
00.

(3) column number of the I2, 4-5
element if from A.
Otherwise set eqiial

to 00.

(4) number of parameter values 15, 6-10
to be used.

(5) minimum value of the F10.3, 11-20
parameter.

(6) maximum value of the Flo0.3 21-30
parameter.

7 blank card (this indicates (blank) (blank)

the end of the problem)

Table XII - Input Format Table for SENSIT

112




The user must be very careful while preparing the
option cards. The following example can best illustrate the
procedure. Suppose it is desired to get the root locus of
the poles of a closed-loop system as the parameter 354 varies
from 0.0 to 100.0. A "number of parameter values to be used"

of 20 is selected giving the following option card:

colum 1234567891011 12 13 14 1516 17 18 19 20 21 22 23 24
data A020400020 06 . O 1 00

If for the same problem, it is also desired to study the
variation of the closed-loop poles as b3 varies from 0.0 to
100.0 with a "number of parameter values to be used" of 10 and
also as G varies from -1600. to -1200. with a "number of
parameter values to be used" of 25, then the two added option

cards would be:

column 1234567891011 1213 14 1516 17 18 19 20 21 22 23 24 25 26

data B030000010 O . O 1 00 .
data G000000025 -1 6 0 0 . - 1200 .
b. Output

The problem identification, the A, pT, ET matrices
and the gain value G are listed first. Then the first element
to be varied and its minimum and maximum values are printed,
followed by each parameter value and the closed-loop poles
associated with it. Finally the root locus plot is given for

each element to be varied.

113

e -

R



Note that the "number of parameter values to be
used” should be kept small. Since the values of the roots
are calculated and printed for each parameter value, 100
values should be regarded as a practical maximum.

c. Example

The stability of the following system is to be

investigated under gain variation and the effect of the non-

perfect integrator (;%E) looked at.

r(t)+

: (t)
G luft) 1 1 1 &lb'
3 , s+1 | s+2 ‘ s+e |

Fig 3-20 Control System for SENSIT Test ;

] First the state equations

il(t) = —ex (£) + x,(t)
x,(t) = -2x, () + x4 (8)
§3(t) = -x3(t) + u(t)

u(t) = Glr(t) - xl(t)]

are written, giving the following data:

114

e . i




Order of the system: N = 3
=€ 1l

A = 0 -2 1

0 0 -1

p' = [0 o 1

xT = [1 o ol

The gain G is to be varied from 0 to 10 with ¢ set to zero,
and a "number of values to be used” of 20 seems reasonable.
The value of € is also to be varied with G set to its nominal
value of 1.0. First € is set equal to zero in the A matrix.
A range of variation of 0 to 1 and a "number of values to be
used” of 25 are selected.

The control and data cards are:

// (standard OS JOB card), TIME=2

// ~EXEC.LINCON

//LINK.SYSINADD . *

~~INCLUDEASYSLIB(SENSIT)

/*

//GO.SYSIN.DD.*

SENSIT TEST < 03
0.0 1.0 0.0
0.0 -2.0 1.0
0.0 0.0 -1.0
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0.0 0.0 1.0
1.0 0.0 0.0
1.0

G0000000200.0 10.0

A010100025 0.0 1.0

(blank card)

/*

The results are presented in Fig. 3-20(A-D).

4., State Variable Feedback (STVAR)

This subprogram is a very powerful aid for design and
analysis of any single-input single-output linear, time-

invariant system represented by the states equations

x(t) = A x(t) + b u(t)

ult) = Klr(e) - kT x()]

v(t) ¢ x(t)

It permits one to find internal transfer functions
of the form xi(s)/u(s), the plant transfer function Y(s)/U(s),
the closed-loop transfer function Y(s)/R(s) and the equivalent
feedback transfer function Hea(s). In addition, this subpro-
gram calculates the controlle£ gain and the feedback coeffi-
cients necessary to achieve a specified closed-loop transfer
function. It is to be run as a Class A job and is accessible

under Mode One or Mode Three.
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The procedure is not very complex, but
requires understanding. All the information needed by
the user to solve state variable feedback problems is
presented in the following paragraphs. However, the theory on
which the subprogram is based is not given. The user who
wishes to learn more about it should refer to the texts by
Schultz and Melsa (5], Melsa and Jones [l], Eveleigh [6] or
others.
a. Input
(1) Basic Cards
As usual the problem identification and the
system order are given on the first data card, followed by
the plant matrix A (NxN) and the transpose control vectors
QT (1 xN). From this input (which is always reguired) the
subprogram verifies the controllability of the system. Three
possible controllability conditions may be found by the
computer. One, the system is completely controllable and no
special message is printed. Two, the system is numerically
uncontrollable. In other words, it is theoretically controlla-
ble but uncontrollable in a numerical sense. This situation
arises when the controllability matrix

E = (8 as as? ... as""}

cannot be accurately inverted using the programmed algorithm.
The matrix and its calculated inverse are then multiplied

together and checked against the identity matrix to provide a




measure of the uncontrollability of the plant. If the des-
cribed condition occurs, the message “plant is numerically
uncontrollable" is given accompanied by "MAX. DEVIATION=number",
where "number" is the value of the deviation from the identity
matrix. Reference 1 states that a maximum deviation value

3 t0 1070

larger than 10 has been found to indicate diffi-
culty. The last controllability condition is "the system is
uncontrollable", and is indicated as such. Note that even if
the plant is determined to be uncontrollable, the computer
solves the problem and presents the results. The option of
-aceepting or.rejecting -+Le solution +is+the designer’se*preroga~"* °- -
tive.
(2) Open-Loop Cards

The next input cards specify which open-loop
transfer functions are to be computed. These cards need not
be provided if no internal transfer function is desired. The
way to identify the internal transfer functions to be output
is by using ficticious c matrices. The following example
demonstrates the procedure. Suppose the internal transfer
functions Xz(s)/U(s) and xl(s)/x4(s) are desired for a fourth
order system. Since only Xi(s)/U(s) type of transfer functions
are computed by the subprogram, Xl(s)/U(s), Xz(s)/U(s) and
X4(s)/U(s) are requested and the user then only needs to

divide Xl(s)/U(s) by x4(s)/U(s) to obtain xl(s)/x4(s). The

fictitious Ce matrices to be provided as input are then:
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Xl(s)
(1) for Ty

ce = [L 0o 0 0]

X, (s)

(2) for m)—l
Cg = [0 1l 0 0]

x4(s)

(3) for m-s—,

Ce [0 0 0 1]

- > @ - e ees » @ - -

Following these cards, the real output matrix c and a null

matrix 0 (1xN) must be entered. The real c matrix is used
to compute %%g% and correctly solve the rest of the problem.
The 0 matrix is necessary to indicate the end of open-loop
calculations.

(3) Closed-Loop Cards

Finally the closed-loop input data are given.
Here again the user has a choice among three options.

The first of these closed~-loop computations
is for analysis only. This choice is indicated by an option
card on which the letter A is printed in column one. Following
this card, the feedforward gain K and the feedback coefficient
matrix ET are given as specified on the input format table.
From this input, the subprogram determines the closed-loop
characteristic polynomial and the numerator of the equivalent

feedback transfer function (both the factored and unfactored
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forms). From these, the block diagram shown in Fig. 3-21
can be drawn where Gp(s) = Y(s)/U(s) and Heq(s) is the

equivalent feedback transfer function.

— Y (s)
Fig 3-21 Heq Form Block Diagrém
The other two closed-loop, cQmputations arg.. . .. . . &
for design purposes. They are used to calculate

the controller gain and the feedback coefficients necessary
to achieve a given closed-loop characteristic polynomial.
This desired polynomial is the denominator of Y(s)/R(s) and
must agree with the system order. If the characteristic
polynomial is to be entered in P form, an option card with
the letter P in column one is presented followed by one (if
n < 8) or two (if n > 8) cards containing the coefficients in
ascending order. The coefficient of the highest degree term
must always be 1.0 and may be entered as ten blank spaces.
‘'On the other hand, if it is more convenient to present it in
factored form, the option card has the letter F in the first
column and the next cards give the real and imaginary parts

of the root using a 2E10.0 format.
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Since a user may very well wish to obtain
the closed~loop computations for many different characteristic
polynomials or try out several values of feedback or feed-
forward gains, the subprogram allows one to ask for as many
closed-loop computations as desired by placing the input
cards one on top of the other.

(4) Problem Termination Card

The last card must be blank. It indicates
the end of the problem and must always be present, whether
or not the closed-loop portion is included. The following

format table conveniently summarizes all the above.

¢ . [ - -

i Entry Input Description Format Columns Used
1 Problem identification, 5ad4, 12 1-20, 21-22
(Basic) system order (N < 10)
2 Plant matrix A (NxN) (one 8E10.0 1-10, 11-20,
3 (Basic) row per card for N < 8; one etc.
row per two cards for N > 8)
3 Control vector bl (1 x N) 8E10.0  1-10, 11-20,
(Basic) (one card for N < 8; two etc.
cards for N > 8)
4 €e (L xN) (one card for 8E10.0 1-10, 11-20,
(open- N"< 8; two cards for N > 8) etc.
loop) (repeat if several fictitious
matrices)
5 Output matrix ¢ (1 xN) (one 8E10.0 1-10, 11-20,
(open- card for N < 8; two cards etc.

loop) for N > 8)

6 Null matrix Q (1 xN) (one 8E10.0 all
(end of blank card for N < 8; two
open- blank cards for N > 8)
loop
part)
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h [N - N "
4 k4

Entry Input Description Format Columns Used
7 Letter A in column one Al 1
Analy-
sis
8 Feedforward gain 8E10.0 1-10
i Analy- ’
sis
9 Feedback coefficient matrix 8E10.0 1-10, 11-20,
Analy- kT (1 xN) (on one card for etc.
sis N < 8; two cards for N > 8)
10 Letter P in column 1 Al 1
Design
option;
wmnfactored
form
11 Desired characteristic poly- 8E10.0 1-10, 11-20,
‘e -.- Design o, nomial coefficients J[(one.ane - - «cx e - eabCs- s cees . ead e

option; card if N < 8; two cards if
unfac- N > 8). See p. (31) for
tored details

form

12 Letter F in column 1 Al 1l
Design

option;

factored

form

13 Desired characteristic poly- 8E10.0 1-10, 11-20.
Design nomial roots (one per card,
option: real part followed by

factored imaginary part. See p. (32)

form for details

14 Blank card (indicates the 8E10.0 blank
end of this problem)

Table XIII - Input Format Table for STVAR
Note that entry (4) must be included if no internal transfer

function is desired. The same also applies to entries (7-8-9)
if analysis option is not desired and (10-1l1) and/or (12-13)
if no design option is taken.
b. Output ;
The problem identification and the A and ET |

matrices are given and, if applicable, a numerically or
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completely uncontrollable situation is indicated. Next the

open~-loop calculations are presented. The denominator

coefficients in ascendina powers of s and the roots of the
denominator polynomial are listed at the beginning of the
section. Then, if requested, each ficticious ¢

~f
followed by the numerator of the corresponding transfer func-

matrix

tion is printed. The last output of this section is the c
matrix and the numerator of the plant transfer function.
The user is reminded that the ficticious C¢ matrices indi-
cate which Xi(s)/U(s) is computed while the c matrix specifies
the real output y(t) which is used to calculate Y(s)/U(s).
. e =+ The 1&st sectidn of the printout concerns the
closed~loop calculations. If the analysis mode was selected,
"KEY=A" is printed followed by the numerator of the equiva-
lent feedback transfer function, Heq(s), both in factored and
unfactored forms. Note that the complete Heq(s) is obtained
by taking the "numerator of Heq" (given in the closed-loop
calculations) and dividing it by the numerator associated with
the real c matrix (given as the last part of the open-loop
calculations). Next the feedback coefficients and the gain
are listed for reference and the computed closed-loop char-
acteristic polynomial and its roots are given.

If computations of the feedback coefficients and
the feedforward gain to achieve a desired closed-loop char-
acteristic polynomial was requested, the computer output

shows "KEY=P" or "KEYaF", depending on the design mode
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selected. Then, as for the analysis mode, the numerator of
the Heq(s) is given, followed by the feedback coefficient
matrix ET and the feedforward gain K. Here it must be pointed
out that the subprogram calculates the gain K so zero steady-
state error results froma step input. A designer who wishes
other conditions may rescale K and ET appropriately by hand.
For example, suppose it is desired to have the controller

gain K = Kl but the computer output shows that K = Ko with

the feedback coefficients kl’ k2 and k3. The procedure is

then to modify the results by setting

- - o “e e - . @ -K o= 0'1(1 - - - - L ) - - ® . - . - . -” .
and setting

k k3]
This does not change Y(s)/R(s) and satisfies the condition
K = Kl' Finally a parameter called "maximum normalized
error" is associated with each closed-loop calculation. The
value of this parameter indicates the exactitude with which
the problem was solved by the computer. This number can help
to determine the validity of a solution, especially when
numerical uncontrollability was encountered to start with.
¢c. Example
Eveleigh [6] presents the ideas of design of

control systems using state-variable feedback and works out
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two examples, the first of which is solved here by the
computer method described previously. The problem can be

stated as follows: given the plant transfer function

= 10
%% = SEFDGEFN

find each state feedback gain and the feedforward path gain

necessary to achieve the closed loop transfer function,

G(s) = —g——ip

8 +4sz+9s+10

The first step of the procedure is to get the

state variable representation of the sygtem._ The following - -~

signal flow graph may be obtained:

Fig 3-22 Signal Flow Graph for STVAR Test

By inspection,

1
a = o -1 2
0 o -3
129
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c = (1 0 0]

Normally the user first runs the subprogram for
open-loop calculations. Then he either uses it for analysis
or for design. To illustrate all the possibilities, the
subprogram was applied to solve the same problem using all
of the different modes.

(1) Open-Loop Test

For the case at hand, assume the solution is
£0 daclude «4l.e internad “transfer furfction "X{('s)?ﬁ('ﬂ .* Thus
the input data requires a ficticious c matrix to be added,

i.e.
c = [0 1 0]

The computer card deck for this simple
open-loop test is:
// ~(standard OS JOB card)
// ~EXEC.LINCOM
//LINK.SYSIN.DD.*
~ ~ INCLUDE .SYSLIB (STVAR)
/*
//GO.SYSIN.DD.*
STVAR OPEN LOOP TEST 03
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0.0 1.0 0.0
0.0 -1.0 2.0
0.0 0.0 -3.0
0.0 0.0 5.0
0.0 1.0 0.0
1.0 0.0 0.0

(blank card)
(blank card)
/*
The first blank card is a null matrix 0 (1 x 3)
that indicates the end of open-loop calculations while the
. - <- gecond-blank’ card ‘indicates the end of the éroSleA. From

the results shown in Fig. 3-23,

X,(8) 10s _ 10

U(s)  s(s+1)(s+3) (s+1) (s+3)
and

Y(s) 10

U(s) -~ s(s+1l(s+3)

(2) Analysis Test
To illustrate the analysis computations, the
feedforward gain K = 1 -and the feedback coefficients kl =1,
kz = 0.6 and k3 = 0 were assumed. Again the computer card

deck is given below.

e e e o
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STATS VAR{ANLE FRECBACK
PROALEM JDENTIFICATION - STVAR OPEN=-LNQP TEST

TG00 R0PSeB S BLP RN PSR L PP 0EIIL P LS 092 EERERERS

THE A RATRIX

- 1.0006C00E 00 0.
3.3 -L.ooooooui 30 z.&:oooooe 00
c.0 0.0 -3,G000000¢ 00
THE 8 MATR IX
0.0 0.0 ’ $,3000000€¢ 00
[ JIITYYR T YT RT3 TRRER L2 R YRS 113 1L Y]]
QPEN-LOOP CALCULAT ICAS *
OENOMINATNR COEFFICIENTS =~ IN ASCENDING PQWERS OF §
0.0 ) 3.0000000€ 00 4,0000000F 00 1.0000000€ 00
THE NOOTS ARE REAL PART IMAGINARY PART
-1.cgaooooE 00 0.0
-3,0000000€ 00 0.0
<.¢ 0.0
THE C MATRIX sesee
0.0 1.0000000¢ Q@ . 0.0
" NUMERATOR CCEFFICIENTS ~ IN ASCENDING PCWERS OF S . -ew®
- - - - =
@0 .. - . - 10000000¢ 01 ©
THE ROOTS ARE asu PAPT IMAGINARY PART
Ce 0.0
THE C maTRIX ssnen
1.0000000¢ 00 0.0 0.0

WUMERATOR COEFFICIENTS - IN ASCENDING POWERS OF S
1.0000000€ 01

Figure 3-23 State Variable Feedback - Open-Loop Test
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"_____---uzzzw"‘ - s ———

// (standard 0S JOB card)
//..EXEC, LINCON
//LINK.SYSIN DD *

~ ~ INCLUDE SYSLIB(STVAR)
/*

//GO.SYSIN DD *

STVAR ANALYSIS TEST 03

0.0 1.0 0.0
0.0 -1.0 2.0
0.0 0.0 -3.0
0.0 0.0 5.0
1.0 0.0 . 0.0 .. - - e ce . -

(blank card)
A
1.0
1.0 0.6 0.0
(blank card)
| /*

Interpretation of the output reproduced in

Fig 3-24 gives

. 10+ 6s _ ' |
and shows that the closed-loop poles are at -2 and -1 % j2. }

(3) Closed-loop Test

s

Here the subprogram ig used for design.

Suppose that the feedforward gain and the feedback coefficient
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STATE VARIABLE FEFUBACK

PROBLEM JDENTIFICATICN - STVAR ANALYSIS TEST
CEBSLISEBS R IIBHTEBENESEB SUSS FSELES VRSO NRENE

ThE A MATRIX

0.0 1.CCJQ000E 09 0.0

Q.0 -1.000CC0OCE GO 2.0000000€ 00

0.0 J.0 : ~3.0000000€ 00
THE B8 MATRIX

0.0 0.0 5.0000000E 00

SUB SNV IS TUUSIITISIISENAN TSI ST REIISRNEE RSN H
OPEN=LOCP CALCULATIONS
DENIMINATOR COEFFICIENTS - [N ASCENDING POWERS OF §

Q.0 3.0C0C00CE 00 4.0000000€ OO0 1. C0O000Q0E 00
THE ROOTS ARE REAL PART 5“AG|NAﬂY PART
~1.C000000F 00 .0
-3.3000000F 00 0.0
0.0 0.0
ThE € MATRIX sosne
1.0000000€& 00 0.0 0.0

NUMERATOR COEFFICTIENTS - IN ASCENDING POWERS OF §
1.0000000€ 01

CUCQPAV AR CRIUN AP SAPNNCUIPANPPRIIIITNOGSP - . . . 4 e .
CLOSED-LUOP CALCULATIONS .
KEY = A s eae
THE NUMERATOP JF F-ECUIVALENT = I'1 ASCENCING POWERS OF S
1.0000000€ 01 5.9699590€ 00 0.0

THE ROOTS AkE AGAG!NAIV PART
-

REAL PART
=1.00066660E 00
THE FEEOJACK COERFFICIENTS

1.00000C0E 00 5.9999566E-01 0.0
ThE GAIN = 1.000000uE 00

THE CLOSED=LOJP CHARACTERISTIC PCLYNOMTAL - IN ASCENDING POWERS OF S

1.000U000E 0L 8.9945S501E 00 4.0000000¢ 00 1. 0000000€ 00
THE ROOTS AKE REBL PART {MAGINARY: PART
-1.CC00000E 00 =-2.0000002E 00
=1.9000000¢% N0 2.0000000€ 00
=2.0000000€ 00 0.0

MAXEMUM NIKMALIZED ERROR = 1.04F-07

Figure 3-24 State Variable Feedback - Analysis Test




values are to be obtained so the closed-loop characteristic

3-+452

polynomial is s +9s+ 10 or, equivalently, the closed-
loop poles are located at -2 and -1+ j2. For illustration,
calculations are requested for both the P and the F forms
(even though they are exactly the same). The control cards
and data deck are then:

// (standard OS JOB card)

// ~EXEC.LINCON

//LINK.SYSIN .DD .*

~ ~ INCLUDE .SYSLIB(STVAR)

/*

//GO.SYSIN .DD .* .
CLOSED LOOP TEST 03

0.0 1.0 0.0

0.0 -1.0 2.0

0.0 0.0 -3.0

0.0 0.0 5.0

1.0 0.0 0.0

(blank card)

F

1.0 2.0

2.0

P

10.0 9.0 4.0 1.0

(blank card)
/*

135




T I R B T T T T T

Y

As expected, the results shown in Fig 3-25
specify a ocain of one and feedback coefficients values of

k, = 1.0, k

1 = 0.6 and k, = 0.0.

3
Note that all the above calculations could

2

have been executed as a single run using the following card
deck:

// (standard OS JOB card)

// ~EXEC .LINCON

//LINK.SYSIN DD *

~ ~ INCLUDE SYSLIB(STVAR)

/*

//GO.SYSIN DD *
STVAR TEST 03
0.0 1.0 0.0
0.0 -1.0 2.0
0.0 0.0 -3.0
0.0 0.0 5.0
0.0 1.0 0.0
1.0 0.0 0.0

(blank card)
F
2.0
1.0 2.0
A
1.0
1.0 0.6 0.0
(blank card)
/*
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STATF VARIAGLE FEEChACK

PROBLEM [DENTIFICATICN - CLOSFD=~LO0P YEST
C38 S99 SATLNRAI VSRS VOESIRIDBAS NG EFCErERGN S

THE & MATRIX

0.0 l.ocococog 90 0.0
0.0 -1.0000000€ 00 2.0000000F 00
0.) - Je0 ~3,0007000F 00
THE & MATRIX
0.0 0.0 $.0000000€ 00
BP0 SP AP RS AL RASRTRES P RS SC OGNS RSSOV SV O BOURES
OPEN=LNOP CALCULATICAS A
DENOMINATOR COEFFICIENTS - IN ASCENOING POWERS OF S
0.0 3.V000000E 00 . 4+0000000€ 00 1.00000006 00
THE ROOTS ARE REAL PART IMAGINARY PART
=1.0CJ0000E 00 0.0
-3.0000000€ 00 9.0
-0 0.0
THE € VATRIX ssses
1.0000C00€ 00 0.0 . 0.0

NUMERATCR CCEFFICIENTS — IN ASCENOING POWERS OF S
1.00000C0€ O}
SO0 O OPSU SO SET LN APP S AR RRE S VUL SRR BRBEIASERS
CLOSED=LNIP CALCULATINNMS
KEY = F  essav
THE NUMERATNP OF r~EQUIVALENT = IN ASCENDING POWERS OF S
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Figure 3-25 State Variable Feedback - Closed-Loop Test
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(4) Step Procedure

The procedure demonstrated through this
simple example applies for all problems. The steps to be
taken can be summarized as follows:

(a} Obtain the state variable representa-
tion of the systemn.

(b) get A, gT, and c.

(c) If necessary, define ficticious Ce
matrices to compute "“internal" transfer functions.

(d) For analysis, select the feedforward
gain K and the feedback coefficients kl' kz, ceey kn.

(e) For design, select the desired closed-
loop characteristic polynomial or poles to be achieved.

5. Luenberger Observers (LUEN)

The subprogram LUEN is used to design a combined
observer-controller to achieve a desired closed-loop transfer
function when some of the states are not accessible. The
following paragraphs present a detailed description of the
computer aided design procedure. However the theory of
Luenberger Observers in the design of linear, time-~-invariant
feedback control is not included in the discussion. Users
who are not familiar with the subject should consult refer-
ences 4 and 7, or any other relevant textbook before working
with this subprogram.

The solution plan is to start from the state variable
repreéentation of a linear time-invariant system and recon-

struct the missing states using an observer. Then, using
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both measured and estimated states, assign the feedback
coefficients and gains required to properly control the
system. The block diagram presented in Fig 3-26 best shows
what is meant. The plant represented by the state variable

equations

x(t)

[}
Y

x(t) + b u(t)

y(t)

]
Q)

x(t)

must be controllable and observable. Notice that the c
matrix indicates which state variables are measured. For
example, a fourth order system with only the states Xy
and X4 being accessible would yield

1 0 0
0 0 1 0

The real output to be controlled, denoted by yc(t), may

t0
]

either be one of the state variables or a linear combination
of several of them. The user is to define a desired closed-
loop transfer function and find what feedback gains would
normally have to be used to obtain it, assuming all states
were available. This is done using the subprogram STVAR
as explained later in the design procedure.

The subprogram LUEN is then used to calculate all

the elements necessary to construct the observer and the
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Fig 3-26 Luenberger Observer Block Diagram
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controller. The designer only has to specify, in an arbi-
trary manner, the observer eigenvalues and the necessary
feedback coefficients previously found by the use of STVAR.
The computer solution gives all the matrices and gains

required. Brought together these form the following compen-

sated system:

x(t) = A x(£) + b u(t)

36 = PR G, y(t) + G, ult)
u(t) = KIr(t) - giy(t) - hTx(t)]
y(t) = C x(t)

where

§(t) = state vector

u(t) = input to the plant

y(v) = output vector

r(t) = gystem forcing input

g(t) = estimated state vector

a = plant matrix (N xN)

B = distribution matrix (N x1)
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F = observer eigenvalue matrix

91'92 = observer gain matrices

K = controller gain

gT = output feedback coefficient matrix
gT = observer feedback coefficient matrix
(o] = output matrix.

All these elements except for K, which comes from STVAR
results, are given as output of the subprogram LUEN. The
four equations defining the compensated system can be easily
rearranged, as demonstrated in the example which follows,
to simulate the system by the use of the subprogram GTRESP.
a. Design Procedure

The step-by-step design procedure presented here
contains the essential information to use the program. It
also summarizes the Luenberger Observers design concepts.

Step 1

The closed-loop transfer function Yc(s)/R(s) to be achieved
must be selected and, assuming all states to be measured, we
solve for the controller gain K and the feedback coefficients
kl’ k2, ceoy kn' This is done using the state variable
feedback subprogram STVAR, which also checks for system
controllability. It must be kept in mind that the c matrix

for STVAR is the matrix associated with the real output yc(t).
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Step 2
If an acceptable solution resulted from STVAR, the observa-
bility index must next be determined. This can be done by
the use of the subprogram OBSERV, or by hand, using

¢ = [T a'c’ @hHiT ... @ahHTich

where the observability index r is the minimum integer such
that the matrix G has rank r. If (e,g) is found to be
observable, an observer whose order is equal to or greater
than (r-1) can be designed.

Step 3
The eigenvalues of the observer are selected arbitrarily.
However, to ensure a unique'solution will exist, it is
necessary to let the eigenvalues of F be different from those
of A. The eigenvalues of A were previously calculated by
STVAR so it should be very easy to choose some appropriate
roots for the observer.

Step 4
Using the input format for LUEN, the data are entered and the
subprogram executed. The following system is the final

result:

x(t) = A x(t) + Db u(t)

~

Z(t) =

0

x(t)
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R(t) = F x(t) + G, y(t) + G, u(t)
u(t) = K(zx(t) - g y(t) - hTx(¢))

Step 5

If desired, the above equations are rearranged using simple,

although sometimes laborious, matrix manipulation as

[}
™
+

o
2
¢

Note that the above augmented system order is equal to the
order of the plant, N, plus the order of the observer. The
complete system is finally simulated by the use of GTRESP
letting BT equal zero and K egual to unity.
b. Input

As usual the data deck begins with the problem
identification card on which the order of the plant, N, the
number of measurements M and the order of the observer, (r-1)
or greater, also appears. Next, the plant matrix A (NxN),
the distribution vector ET (1 xN) and the measured states
matrix C (M xN) are given one row at a time. The feedback

coefficient matrix kT is then entered exactly as given by
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the state variable feedback subprogram (STVAR) output.
Finally, the observer eigenvalues, which are different from
those of the plant, are supplied either in the form of a
characteristic polynomial, option P, or as the roots of that
polynomial, option F. The option is specified in column one
of the first card by writing the letter P or the letter F.

If option P is selected, the characteristic polynomial coeffi-
cients are given in the usual ascending order fashion, with
the highest order coefficient always set equal to 1.0. For
example, if the characteristic polynomial of a third order

observer is chosen to be 16-+4s-+552-+53

the last two data
deck cards would then be:

P

16.0 4.0 5.0 1.0
On the other hand, if the roots are to be entered as such,
the letter F is written on the option card followed by the
observer eigenvalues presented in the usual manner. For

example, if the observer poles are -2, -2, -1l+j, -1-j the

cards would then be

1.0 1.0
Note the sign inversion and the fact that only the complex
root with the positive imaginary part is entered.
The following input format table summarizes

the above.
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Entry

and C matrices,

Input Description

Problem identification,
order of the plant N < 10,
dimension of the output
vector M, order of the
observer L _ (r-1)

Plant matrix A (N x N) (one
row per card for N < 8;
one row per two cards for
N > 8)

Distribution matrix bT (1 xN)
(one card if N < 8; two
cards if N > 8)

Measurement matrix ¢ (M x N)
(one row per card for
N < 8; one row per two cards

for N > 8)

Fﬁedback coefficient matrix
(1 xN) (on one card if
N < 8; two cards if N > 8)

Letter F (i1f observer eigen-
values are to be entered as
roots) or letter P (if
observer eigenvalues are to
be supplied by giving a
characteristic polynomial)

Entered the observer eigen-
values as specified on the
previous card. (If option F,
enter the roots real and
imaginary parts; if option P,
give the characteristic
polynomial coefficients

in ascending order).

Table XIV - Input Format Table for LUEN

¢. Output

The problem identification followed by the A, b
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Format

5A4,
312

8F10.3

8F10.3

8Fl10.3

8Fl10.3

Al

8Fl0.3

Columns Used

1-20, 21-22,
23-24, 25-26

1-10, 11-20,
21"30' etc.

1-10, 11-20,
21-30 ¢ etc-

1-10, 11l-20,
21-30, etc.

1-10, 11-20,
21-30, etc.

1l
1-10, 11-20,
21-30, etc.

T

the desired feedback coefficients and the




observer eigenvalues, both in factored and unfactored form,
are presented for reference. The observer and controller

elements are printed next as the F matrix, the g matrix,

1

the G, matrix, the output feedback coefficients gT and the

2
compensator feedback coefficients QT.

The complete solution of a problem should also
include the results from the subprograms STVAR, OBSERV and,
if a simulation is performed, GTRESP.

d. Example

The example presented by Eveleigh [6] pp. 357-360

was slightly rearranged and the state variables x, and x

3 4
were assumed to be inaccessible. The signal flow graph for

the uncompensated system is then:

Fig 3-27 Uncompensated System for LUEN Test

where Yo is the controlled output and xl(t) and xz(t)

are the measured states.
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From the diagram, the system matrices are:

0 1 0 0]
0 0 1 0
A =
- 0 0 0 1
o -15  -23 -9
B = [0 0 0 1]
c = [20 10 0 0]

The solution presented next utilizes the design procedure of

part a.

Step 1
The closed-loop transfer function to be achieved is chosen

to be:

YC(S) ‘1

R(s) s*+ 653+ 1752 + 285 + 20

- 1
(s+2)(s+2)(s+1+32)(s+1=-32)

The controller gain K and the feedback coefficients required
are found by the use of the subprogram STVAR for which the

control cards and data deck are:
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STATE VARIAPLE FEFCBACK
PROBLEM IDENTIFICATION - STVAR FOR LUEN TEST

'.......'..“.‘..‘.‘....‘..0“.‘.‘.‘.‘...‘...

THE A MATRIX

0.0 1.0000000E 00 0.0 0.0
.0 Q0 ° 1.0000000€ 00 0.0

.0 0.0 Qe s.COOOOOO‘ 80
0.0 -1.5000000€ 01 -2.3C00000€ O1 ~9.0000000¢ 00
THE B MATAIX

0.0 0.0 0.0 1.0000000€ 0O

...........'.'..“...".‘.“‘.‘...““."O...

IPEN-LOOP CALCULATIONS
DENININATOR COEFFICIENTS - IN ASCENOING POWERS OF S
0.0 1.5000GC0E OL 2.3C00000F Ol 9. 0000000€ 00

THE ROOTS ARE RY MAGINARY PART
ooTs -3, :}c ooo £ go &
«4.9999990F 00
-~9.9999994E~01 o.o
0.0 0.0
THE C MATRIX se98e
2.0000000€ OL 1.0000000E 01 0.0 0.0
NUMERATOR COEFFICIENTS ~ LM ASCENDING POWERS OF S
2.0000000€ Ol 1.0000000€ 01

THE ROOTS £RE s"sGlNlﬂY PART

REAY PARY
-2.00800005 00

........‘......O......'..‘.'t."O‘-‘-.‘.t.’..

CLOSED=-LOAP CALCULATICNS
KEY = F ssess
THE NUMERATOR OF H—EQUIVALENT - IN ASCENDING POWERS OF §

2.06000000E 01 ' L.3C0CCCOE Ol ~6,0000000€ 00 -3,0000000€ 00
ThE RONTS ARE REAL PART X“AGINARY PART
-1.G396233% 00 -0
3.2062893€ 00 0.0
‘THE FEEDBACK COEFFICIENTS .
2.0000000€ 01 1.3000000% 01 -6.00000005 00 -3,0000000¢ 00

THE GAIN = 1.0000000E 00
THE CLOSED-LOOP CHARACTERISTIC PALYNOMIAL - IN ASCENDING POWERS OF S

2.0000000¢ 01 2.600CC00E 01 1.7000000€ O1 6.0000000€ 00
THE ROOTS ARE KEAL PARY lNlGlNlRV PART
-1.0007000E 00 ~2.0000000€ 00
~140030099% 30 2.000000%€ 00
-2,0004845F 00 0.0
=149995155€E 00 0.0

MAXIMUN NIRMALIZED ERROR » C.0

Figure 3-28 STVAR Results for LUEN Test
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1.0000000€ 00




// (standard 0S JOB card)
L X - L 9 £ 4 Solin, 8 -
// ~EXEC.LINCON

//LINK.SYSIN.DDA*

~~INCLUDE.SYSLIB (STVAR)

/*

//GO.SYSIN.DDA*

STVAR FOR LUEN TEST N4

0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0 |
0.0 0.0 0.0 1.0 i
0.0 -15.0  -22.0  -9.0

L 0.0 0.0 0.0 1.0
20.0 10.0 0.0 0.0

{blank card)

F

2.0
2.0 :
1.0 2.0 g
(blank card) !
/* i
Results shown in Fig, 3-28 indicate that the system is com-

pletely controllable, the plant eigenvalues are -3, -5, -1,

and 0, the feedback coefficients are 20, 13, -6 and -3 and

ia .

the controller gain K eguals unity.

Step 2

The observability index is determined using the subprogram

OBSERV. The computer cards are as follows:

|
{
f
"
i




// (standard 0OS JOB card)

// .EXEC, LINCON

- W =

//LINK.SYSINADDA*

« - -5 -

~~INCLUDE .SYSLIB(OBSERV)

/*
//GO.SYSIN.DD.*
LUEN TEST 0402
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0
0.0 ~15.0 -23.0 -9.0
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
/*

Step 3

An observability index r = 3 (results taken from OBSERV
output, Fig 3-29) permits us to design an observer of order
equal to or greater than (x-1) = 2. Here a reduced-order
observer is being designed and eigenvalues of -3.5 and -4.0
were selected for the observer. Note that, as required,
there are no common eigenvalues for the plant and the
observer.
Step 4

The data for the subprogram LUEN are:

system order: 04

number of measurements: 02

order of the observer: 02
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0 1 0 0

0 0 1l 0 e . - e
A = ' plant matrix
- 0 0 0 1

0 =15 -23 -9
bT = {0 0 0 1l] , distribuﬁion matrix

state measurement

Q)

L}
2
~ o
o o
e

matrix
kT = [20 13 -6 -3] , desired feedback
b coefficients

(from STVAR)

observer eigenvalues: -3.5, -4.0

The following set of cards is then:
// (standard OS JOB card)

// ~EXEC .LINCON

//LINK,SYSIN.DD.*

~~INCLUDE .SYSLIB (LUEN)

/*
//GO.SYSIN DD .*
LUEN TEST 040202

0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0
0.0 -15.0 -23.0 -9.0

152




0.0 0.0 0.0 1.0
1.0 0.0 0.0 0.0
- 0.0 1.0 0.0 0.0
20.0 13.0 -6.0 -3.0
F
3.5
4.0
/*
From the results shown in Fig 3-30, the complete system can

be described as:

[0 1 0 0] Gcl (¢)] (]
. 0 0 1 0 xz(t) 0
x(t) = + u(t)
- 0 0 0 1 x3(t) 0
o -15 =23 -9]  |x, (%) 1)
N 7.5 - ;3(t)
§(t) = A
14 0 x4(t)
85.5 29.25 xl(t -3
+ + ult)
0 0 xz(t) -1.5
u(t) = [1.0]r(t) - [20 8.5] xl(t

xz(t)

- [1.0 0.0] §3<t)

~

x4(t)
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Figure 3-30 Luenberger Observer Design - Computer Results
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From these equations a block diagram or a signal flow graph
could be drawn showing the compensated system.

Step 5
The system is simulated by the use of the araphical time
response subprogram (GTRESP) for a unit step input. After

some matrix manipulation, the following augmented system is

obtained:
~ 0 1 0 0 0 0] Scl(t)
0 0 1 0 0 0] fx;(t)
%(t) 0 0 0 1 0 0f |xy(t)
x(t) -20 -23.5 -23 -9 -1 o |x, (0
145.5 54.75 0 0 4.5 1] |x,(t)
30 12.75 0 0 -12.5 0] [x,(t)
u “1
0
0
0
+ r(t)
1
-3
-l.s
la o
v (t) = [20 10 0 0 0 0 0] x(t)
2 (t)
X' = 0

155

}
?
1

A




For a step input, r(t) = 1.0 and initial condition

_the_initial and final timgs are 0 angdJlfle

rl‘,:) %

(0

(°

respectively, the integration time step is 0.0025, and the

plotting parameter FREQ is 100.

The computer deck for GTRESP is then:
// (standard OS JOB card) ,TIME=2

// .EXEC LINCONF

//FORT .SYSINaDDA*

SUBROUTINE RFIND(T,R)

R=1.0
RETURN
END
/*
//LINK.SYSINADDA *

~~ INCLUDE.SYSLIB (GTRESP)
/*
//GO.SYSIN.DDA*

GTRESP FOR LUEN TEST 06

0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0
-20.0 -23.5 -23.0 -9.0
145.5 54.75 0.0 0.0
30.0 12.75 0.0 0.0
0.0 0.0 0.0 1.0

20. 10. 0.0 0.0

"
(K=}




‘Smaa—- N g
[N .

0.0 10.0 0.002 100.

/*

The results are shown in Fig 3-31. The user is reminded
that the observer does supply estimates of the missing
components of the state vector but at the expense of adding
its own poles to the over-all system.

For comparison, a run is also made simulating
the system that would have been obtained if all states were
measured, using the feedback coefficients and controller
gain from STVAR subprogram results. Since the same forcing
input is used, the control cards remain the same and the data
cards are changed to read:

ALL STATES MEASURED 04

0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0
0.0 =-15.0 -23.0 -9.0
0.0 0.0 0.0 1.0
20.0 20.0 0.0 0.0
20.0 13.0 -6.0 -3.0
1.0

(blank card)
0.0 10.0 0.002 100.
Y
/*
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Figure 3-31 GTRESP for Luenberger Observer Test




The time response obtained in Fig 3-32 is almost
identical to the one of Fig 3-31, showing that the observer
- ... AL
designed does a very good job.

6. Series Compensator (SERCOM)

This subprogram is used to design optimal linear,
time-invariant control systems with incomplete state measure-
ments. The optimality criterion here is in terms of a
specified closed-loop transfer function to be achieved. The
main idea behind the subprogram is to construct a series
compensator such that the need for feedback from the unmeasured
state variables is eliminated. The way to accomplish this
is presented in [8] and [1l] and the theory is not repeated
here. The user should, however, familiarize himself with the
subject before attempting to solve problems by the use of
the subprogram SERCOM,

The following paragraphs outline the computer-aided
design procedure, the inputs required and the expected ocutput.
To illustrate the technique an example problem is worked out
in detail. Notice that the overall procedure differs from
the one presented in [1].

a. Design Procedure

Before the step-by-step design procedure is out-
lined, it is necessary to recall the main equations from ([8]
and (1]. First the uncompensated system state equations are

(as for LUFN) of the form
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Figure 3-32 GTRESP for Feedback with Complete State Measurements




T A L e

where

output variable to be controlled (could
be one of the measured states or =
linear combination of them)

yc(t)

c = output variable vector
v (t) - vector of measured components of
> state vector

C

~

state measurement matrix

An arbitrary dynamic controller

2(t) = D z(t) + e w(t)
u(e) = £lz(t)

is added to the above system. It is to be noted that z(t)

are defined as

2T(t) = lue) am ue ... D

wi{t) = u(k)(t)
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gT = [1L 0 o0 0]
) - . - [ VRIS P adiE w
e = [ -
0
|1,
and |
pb = o 1 0o ... 0]

fo
o
o
.
.
K=

The complete system then takes the form

x(t) = A x(t) + b u(t)

z(t) = D z(t) + e w(t)

wit) = £z(t) W
wit) = Klr(t) - k;"x(t) - k,7z(t)]

The block diagram representation is shown in Figure 3-33A.




x(t)

r(t)(;> K sﬂii;me—- : gT 1ﬂgL PLANT

Fig 3-33A Serjially Compensated System
with Complete State Measurements
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It is clear that this closed-loop system does not solve the

problem since it uses all the state variables. It is possible,

however, starting from this system, to eliminate the feedback

from the unmeasured state variables and this is the purpose

of the subprogram SERCOM. Thus, given the above control

system, the computer program accomplishes the hecessary

transformations and outputs the new closed-loop system

x(t)
y (t)
v(t)

u(t)

2ol

a E(t) + b u(t)

({9

x(t)

v(t) + G y(t) + Ker(t)

£Tv(t) + gly(t)

(or in block diagram form, as in Figure 3-33B),

with
A = plant matrix
b = distribution vector
D = compensator matrix
G = major loop feedback coefficient matrix
e = input wector
K = input gain (a scalar)
gT = compensator output matrix
gT = minor loop feedback coefficient matrix
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u(t)

| r(t)l M v
|

()
o

M.Q._]

]
N

Pig 3-33B Serially Compensated System with
Incomplete State Measurements
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From theory, such a linear compensator can be designed pro-
vided the order of the controller is at least (r-1l), where
r is the observability index of (A,C) [8].

To summarize the above exposé and give a practi-

cal means of using the method, a step-by-step design proce-

tor method has been assimilated, it should be sufficient to

Step 1

Step 2

dimensions are

‘ 9: (r-1) x (r-1)

el: 1x (£-1)

T

g s 1x (r-1)

It is to be remembered that

166

for SERCOM to solve any given problem.

r of (A,C). If the system is observable,

dure is presented. After the theory of the series compensa-
just follow these few steps and look at the input format table
The subprogram OBSERV is used to find the observability index
the minimum order

for the compensator is then established as (r-1).

The 9, fT and eT matrices are selected such that their

0]




ol
.—l
o
o

.
o
S

P = e 060 e e e e o0 g o

0 0 0 .o 0 1

o

o 0 ... 0 o]

For instance, for a compensator of order one,

£f = 1
eT = 1
D = 0

while for a compensator order equal to two,
£ = 1 0]

e = [0 1]

- [

The augmented system is then written as

167




x(t) A bl o x(t) 0]  u(e)
e BT E TR AL s,
z(t) ¢ ! D 2 (t)

}J

This form complies with the format necessary to use the
subprogram STVAR of step 3.

Step 3

. . Yc(s) . et

A desired closed-loop transfer function R(s) is specified
for the augmented system. The order of the combined system
is (n+r~-1). For example, suppose that a third order system
is to be serially compensated. 1Its observability index,
found using OBSERV, is r = 2. Then a fourth order polynomial
must be chosen to characterize the desired closed-loop
behavior.

At this point, all states are assumed to be
available for measurement and the subprogram STVAR is used to
obtain the controller gain K and the feedback coefficient
matrix ElT and EZT. It is recalled that ElT contains the
plant feedback coefficients while 5 T contains those for the
compensator.

Step 4
The compensating elements for the augmented system are com-
puted and the required matrix transformations accomplished by
the use of the subprogram SERCOM. The final system takes

the form
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where all elements are given in

Step 5

x (t)
v(t)
u(t)

y(t)

~

+

b u(t)

G y(t) + Ker(t)

gyt

the output of SERCOM.

If desired, the compensated system is simulated using GTRESP.

As for Luenberger Observers, some simple matrix manipulations

are required to put the egquations into the form

x(t) x(t)
. = A
v (t) S FCY
yc(t) = x(t)

v(t)
u(t) = r(t)
K= 0
gain = K
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x(tk) = 0

The graphical time response subprogram with appropriate
time specifications is then run.

b. Input

The data deck includes all the parameters defined

for the augmented system. To avoid any mistake, the user
should refer to the design procedure for comparison. The
input data cards start as usual with the problem identifica-
tion, the order of the plant N, the number of measurements
M and the compensator order (r-1l) or greater. The complete
system matrices are then presented, one row at a time, in

the following order: A (NXN), 13T

(I1xm), C (MxN),

DI(r-1) x (r-1)1, €T (1% (r-1)] and £ (1x (r-1)]. On the final
cards, the feedback coefficient matrices ElT and EzT and the
controller gain K are presented. For a zero steady-state

error to a step input, these would be entered exactly as

they appeared on the subprogram STVAR output. The following

input format table summarizes the entries required for SERCOM.

Entry Input Desgcription Format Columns Used
i Problem identification 574 1-20, 21-22, !

order of the plant (N < 10), 312 23-24, 25-26 i

number of measurements = M,

compensator dimension = (r-1) 1

or greater
; 2 Plant matrix A (N xN) (one 8F10.3 1-10, 11-20, i
p row per card for N < 8; 21-30, etc.

one row per two cards for

N > 8)
i
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i.e., the problem identification, the A, b’, C, D, e', £

Input Description

Distribution vector pT @ x N)
(one card if N < 8; two
cards if N > 8)

State measurement matrix

C (MxN) (one row per card
for N < 8; one row per two
cards for N > 8)

Compensator Matrix
D{(r-1) x (r-1)] (one row
per card for (r-1) < 8; one
row cards per two cards for
(r-1) > 8)

Input matrix gT (1 x (r-1))
(one card for (r-1) < 8;
two cards for (r-1) > 8)

Compensator output matrix
£T(1 x (r-1)] (one card
if (r-l) < 8; two cards
if (r-1) > 8)

Feedback coefficients matrix
[k k,T] (1 xN+r-1) (one
cata if? (B+r-1) < B; two
cards if 8 < (N+r-1) < 16;
three cards if (N+r-1) > 16)

Controller gain K

Table XV - Input Format Table for SERCOM

c. Output

Format

8Fl10.3

8Fl10.3

8F10.3

8Fl10.3

8Fl10.3

8Fl0.3

8F10.3

Columns Used
1-10, 1l1-20,
21-30, etc.

l1-10, 11-20,
21-30’ etc:

1-10, 11-20,
21-30, etc.

1-10, 1li1-20,

21-30, etc.

1-10’ 11_201
21-30, etc.

1-10, 11-20,
21-30, etc.

First the information given as input is listed,

T T

-~

and [k T EZT] matrices and the controller gain K. Next the

final compensator system matrix D[(r-1) x (r-1)] is printed

(the user must be careful not to confuse this matrix with the

original augmented system matrix D), followed by the minor
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feedback coefficient matrix gT (1 xM) and the major loop
feedback coefficient matrix g [(r-1) xM).
d. Examples

Two design examples are worked out. The first
one is a simple second order system with only one measured
state variable. The other is the fourth order system that
was used to demonstrate Luenberger Observers in the previous
section.

(1) Example One

A design of a feedback system is required

such that the following controllable dynamical equation

0 1 xl(t) 0
= + u(t)
0 -1 X, (t) 1
y(t) = [1 0] x(t)

has a time response to a step input approximately the same
as for a second order system with poles at -1 % j.

Step 1.1
The observability index for the system can easily be found,
by hand or by the use of the subprogram OBSERV, to be r = 2.
Thus a first order compensator is sufficient.

Step 1.2

The D, fT and gT matrices are selected such that:
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b =0
eT = 1
£ =1

and the augmented system takes the form

x(t) 0 1 0 x(t) 0
=== = _ =-=={ + u(t)
2 (t) 0 Lo e 0
0 0 0 1
Step 1.3

The degree of the characteristic polynomial is then three.
Since the desired response was specified to be similar to a

second order system with closed-loop poles at -1+ 3j and ~1-7,

it seems appropriate to select these roots plus a third real
root with a large negative value. The subprogram STVAR is
then used to calculate the required feedback coefficients and
the gain for roots at -10, -1+ 3j, -1~3j. The computer deck
for STVAR is

// (standard OS JOB card)

// ~EXEC LINCON

//LINK.SYSINA.DD.*

~~INCLUDE.SYSLIB (STVAR)

/*

//GO.SYSIN.DD.*
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STVAR FOR SERCOM1 03

0.0 1.0 0.0
0.0 -1.0 0.0
0.0 0.0 0.0
0.0 0.0 1.0
1.0 0.0 0.0

(blank carad)

F

lo.

1. 1.

(blank card)

/*

The results are shown in Fig. 3-34.

Step 1.4

Sufficient information is now available to run the subprogram

SERCOM. We put together the data:
order of the plant = 02
number of measured states = 01 ]

compensator order = 01

plant matrix A = 0 1l

-
distribution vector QT = [0 1]
state measurement matrix C = [1 0]
compensator matrix D = 0 §

input matrix el = 1

o 1

compensator output matrix fT = 1

~
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STATE VARIABLF FEECOACK
PRUALE™ [DENTIFICATION - STVAR FOR SERCOM |
SEBESE IO EII NS IESP LRI V00N ENANRNEIRY

THE A MATRIX

0.0 1.9C00QCCE 00 «0
0.0 -6.00000005 (4] «3000000¢ Q0
€.0 «0 «0
TeE 8 MATRIx
0.0 0.0 1.0000000€ 00

SR US040003000L 200022 2F0URANIRNIRELIPEITERRS
OPEN=LNCP CALCULATICMNS
OENOMINATOR COEFFICIENTS - IN ASCENDING POWERS OF 3

C.0 0.0 1.0000000F 00 1.0000000€ 00
THE ROOTS ARE ﬁEAb PART IMAGINARY PART
=1.CC00000E 00 0.9
U0 0.0
C.C 0.0
THE € “ATRIX sesse
1.C000000 & 0O 0.0 . Q.0

NUMERLTOR CCEFFICIENTS = IN ASCENDING PCWERS OF §
1.000000U€ 0O '

8O SRS T VSV L ACN UL RS LT RS LIRENS NER D BL QB AB ARG NS

CLOSED-LI0OP CALCULATIONS

KkY = ¢ snone
THE NUMFRATOR (F H=SQUIVALENT = IN ASCENOIMG POWCLRS QOF S
1.0003000E 00 1.0999994€ 00 5.4999995€-01
THE RNOTS AFE REBL PAFY IMAGYNAPY PART
-6.C509135F-01 0.0
THE FEECBACK COEFFICIERNTS
1.0000000¢ 00 5.46935$56~01 S+ 4999995F=-01

THE GAIN = 2.0000600E€ 01
"THE CLUSED~LCOP CHARACTERISTIC POLY'IOMIAL = IN ASCENOING POWERS OF S

2.0000000E 0L 2.2€3C000F 01 1.20000007 01 1.0000000% 00
THE RUCTS ARE REAL PAPT [MAGINARY PART
=1.00000007 01 N.0
-1+0090030¢€ QO =-1.0000000E 00
-1.C000000E 00 1. 0000000€ 00

MAXI MM NORMALIZED ERRCR a 6,94E-07

Figure 3-34 STVAR Results for SERCOM Test One




[k, T

K k,1 = [l 0.55 0.55], (from STVAR

output)
K = 20 (from STVAR output)

So the control deck and data cards for SERCOM are:

// (standard OS JOB card)

// ~ EXEC.LINCON

//LINK.SYSIN.DD . .*

~~INCLUDE.SYSLIB (SERCOM)

/*

//GO.SYSIN..DD . *

SERCOM TEST ONE 020101

0.0 1.0

0.0 -1.0

0.0 1.0

1.0 0.0

0.0

1.0

1.0

1.0 0.55 0.55
20.0

/*

From the results reproduced in Fig. 3-35, it is easy to

17 x(&) + fo] wu(e)
-1 1

determine the final system as

F X(t)

]
‘O Ol




EEIES COMPEMSATOF ULSIGN PRUG<A™

I M T Tty (O BPACIw Test o

SECNSR S AR ET RAR IR CIR SRR ANPIP R BRI AN G RENRRTAS RN
Thé A MATRIX

0.0 1.
2.0 -1,

THE 3 MATRLIX
0.0 1.0C00CACE 00
THE € MATRIX
1.0000200€ QO 0.0
THE D mMaATR X
0.0
THE € maATAiX
1.0U00Q30F QO
THE F MATRIX
1.0000000€ 00
DESIRED FEEDBACK CCEFFICIENTS
1.00U0030€ Q0 5.4$95555E=01 Se 4999995£-01
THE GAIN = 2.0000000E 0} '
SRSV LSS Rva gty S84 XAUNAER AT ESE R LRSI ESR AR NECRE N

THE COMPEHSATOR SYSTEM MATRIX
-1.0999698¢ 01
MINOR LODP FECOBBCK COEFFICIENTS
-1.1000000€ Gl

MAJIR LONP FEFDBACK COEFFICIENTS

1.0130003€ 62

SRS AP PRSAINPRAT SRS ES U2 8D SEBRVIVIPVPNBARTORD A

mm
[=3=3
[=1<]

Figure 3-35 Serial Compensator Design - Test One
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v(t)

-1llv(t) + 101y (t) + (20)(l)r(t)

u(t) = v(t) - lly(t)
y(t) = x;(t)
Z or, equivalently,
T x (8) = x,(t)
X, (t) = -llx;(t) = x,(t) + v(t)
v(t) = 101lx,(t) - 1lv(t) + 20r(t)

Step 1.5

This last set of equations can be readily used in the subpro-
gram GTRESP to simulate the system forced by a unit step

input. From the above equations one gets:

0 1 0

a, = |11 -1 1
101 0 -11

bY = [0 0 20]

c = (1 0 0]
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KT = 0
K = 1.0

x(t,) = 0

tyg = 0.0 te = 10.0
dt = 0.002 FREQ = 100.

We assemble the computer card deck as follows:
// (standard 0S JOB card) ,TIME=2
// ~ EXEC,.LINCONF
//FORT .SYSIN DD .*
SUBROUTINE RFIND(T,R)
R=1.0
RETURN
END
//LINK.SYSIN, DD, *
~~INCLUDE, SYSLIB (GTRESP)
~~ENTRY, GTRESP
/*
//GO.SYSIN, DD, *
GTRESP FOR SFRCOM1 03
0.0 1.0 0.0
-11. -1.0 1.0
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101 0.0 -11.

0.0 0.0 20.0

l.0 0.0 0.0

0.0 0.0 0.0

1.0

0.0 0.0 0.0

0.0 10.0 0.002 100.
Y

/*

The time response shown in Fig. 3-36 can be easily compared
with the actual feedback system where both state variables
are available (by the use of STVAR and GTRESP) and a decision
made regarding the suitability of the compensated system.

Here it is important to note that the method
increases the order of the system and adds undesired
peles. For this reason it is always wise to simulate (using
GTRESP). Another good way to investigate the results is to
run the subprogram STVAR in open-loop mode for the same set
of equations as for GTRESP. This gives the designer a double
check on the accuracy of the solution and verifies the con-
trollability. These ideas are demonstrated in the second
example.

(2) Example Two
The same problem presented for the

Luenberger Observer example is used here, this time with a

series compensator. The fourth order uncompensated system
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x(¢) = [o 1 o 0] =xtt)+ [o wue)
o o0 1 0 0
o o o0 1 0
0 -15 -23 -9 [l

with measurement eguation

ylt) = 1 0 0 0 x(t)
0 1 0 0

and controlled output
yc(t) = (20 10 0 0} x(t)

is to be controlled so the overall time response approaches
the one that would result from feeding back the states, if
they were all measured, for a fourth order system with
closed-loop poles at -2, -2, -1+ 3j2.

Step 2.1
The observability index is found by the use of the subpro-
gram OBSERV to be r = 3. Thus the compensator order must be
at least (r-1) = 2.

Step 2.2

D, gT and gT matrices are selected as follow:

~

: D = [:o 1] , e = [0 1], £T (1 0]

0 0
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- - A Al 1 -yt = o 1

and the augmented system becomes

x(¢ef = fo 1 o o o O [x(t]] + [0] wu(r)
5 (t) o 0 100 0, 0
o o o 1 o0 0 0
0 -15 -23 -9 1 0 0
c o o0 o o0 1 0
o o o o o0 0 1]
yo(t) = (20 10 0 0 0 0] x(t)
z(t)

Step 2.3
Pole placement is usually dictated by some time response
specifications. The desired response given here suggests
that four of the closed-loop poles be located at -2, -2 and
-1l+3j2. The two other roots are undesired and a rule of
thumb is to place them to the left of the desired ones.
Here -3.5 and -4.0 were selected and the subprograms

STVAR run with the following control and data cards:

// (standard OS JOB card)
// ~EXEC.LINCON
//LINK.SYSIN.DD.*

~~ INCLUDE.SYSLIB (STVAR)
/*
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//GO.SYSINADD~*

STVAR FOR SERCOM 2 06

0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 l.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0
0.0 -15. -23.0 -9.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0 %
20. 10. 0.0 0.0 0.0 0.0 ‘

{blank card)

F

3.5

4.0

(blank card)
/*

The output shown in Fig. 3-37 gives the gain and
feedback coefficients that would be required if all states
were measured.

Step 2.4
Since some of the states are not measurable, the subprogram
SERCOM is used to transform the original system into the appro-

priate series compensated system., The information necessary

to run the subprogram is:
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order of the plant = 04

number of measured states = 02
compensator order = 02
0 1 0 0]
0 0 1 0
plant matrix A =
~ 0 0 0 1
| 0 -15 =23 -9
distribution vector PT = [0 0 0 1]
state measurement matrix ¢ = 1 0 0 0
0 1 0 0
compensator matrix D = 0 1
0 0
. . T
input matrix e = [0 1]
compensator output matrix fT = [1 0]
T T
[kl k2 1 = [20. 25.3 8.07 .607 .893 .321),

(from STVAR output)

K = 14. , from STVAR output.
The computer card deck is then
1 // (standard OS JOB card)
// ~ EXEC.LINCON
//LINK.SYSIN.DD.*
~~INCLUDE.SYSLIB (SERCOM)
/*
//GO.SYSINADDA*
SERCOM TEST ONE 040202
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0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0
0.0 -15. -23. -9.
0.0 0.0 0.0 1.0
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 1.0

0.0 0.0

0.0 1.0

1.0 0.0

20. 25.321 8.071 .607 .8983 .3214
14.

/*

The computer output (Fig. 3-38) gives the compensated system

x(t) = [o 1 0 0] x(t) + [o] wu(t)
0 0 1 0 0
0 0 0 1 0
o -15 -23 -9 1]
vit) = [0 11 v(t) + [88.75 -20.747 y(t)
0 0 0 0
+ 14 r(t) ]
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u(t) = [1 0] v(t) + ([-54 -8.5] y(t)
E y(t) = 1 0 0 0 x(t)
¥ ~
5 0 1 0 0
|
g Step 2.5

{ Again it is relatively straightforward to rearrange the
; equations in an augmented system form suitable for simulation
using the subprogram GTRESP. For completeness the result is

given here.

) 1 0 0 0 o ]
0 0 1 0 0 0
0 0 0 1 0 0
A =
-54. -23.5 =23 -9 1 0
88.75 =-20.74 0 0 0 1
0 0 0 0 -12.58 =-4.5
b -
T
b,” = [0 0 0 0 0 14]
gain = 1




The time specifications are chosen to be

and the control and data cards for the graphical time response
subprogram with a unit step input are

// (standard 0S JOB card), TIME=2

// . EXEC LINCONF

//FORT .SYSIN DD *

SUBROUTINE RFIND(T,R)

R=1.0
RETURN
END
/*
//LINK.SYSIN .DD .*

~~ INCLUDE ,SYSLIB (GTRESP)
/*
//GO.SYSIN DD .*

SERCOM TEST TWO 06

0.0 1.0 0.0 G.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0
‘ -54. -23.5 -23. -9. 1.0 0.0
88.75 -20.74 0.0 0.0 0.0 1.0
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0.0 0.0 0.0 0.0 -12.58 -4.5
0.0 0.0 0.0 0.0 0.0 14.0 f
20.0  10. ;
0.0
1.0
0.0
0.0 10. 0.002  100.

Y
/*

Results in Fig. 3-39 are very similar to those i
obtained for the Luenberger Observer syséem. The response |
can be compared against the original specifications. If unsat-
isfactory, the designer can redo the problem using different
pole locations. As mentioned at the end of the previous

example, it might be good to find out if any mistake was

made by verifying the location of the closed-loop poles. This ;
is easily accomplished by running the subprogram STVAR for k
open-loop calculations for the above augmented system. The
data deck consists of the problem identification, the system
order, A, b and c matrices and two blank cards. The complete
computer deck is

// (standard OS JOB card) %
// . EXEC_LINCON §

//LINK.SYSIN.DD,.*

. .INCLUDE .SYSLIB (STVAR)
/*
' //GO.SYSIN DD, *
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SERCOM TEST 2 06

0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0
~-54. -23.5 -23. -9.0 1.0 0.0
88.75 -20.74 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 -12.58 -4.5
0.0 0.0 0.0 0.0 0.0 14.0
20. 10.

(blank card)
(blank card)
/*

Note that the gain K is carried inside the gT
matrix as required by the equations representing the final
compensated system. Results presented in Fig. 3-40 show that
the roots are very close to their originally specified
locations.

7. Optimal Control/Kalman Filters (RICATI)

RICATI is a double-precision subprogram used to solve

the Riccati differential equations

1

B(t) = =P(t)A - ATP(t) + P(t) BRUB'R(t) - Q (1)

and/or

T~ Be)CTR IcB(t) + B3BT  (2)

~ o

P{t) = AP(t) + F
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to obtain the gain matrix

G, (t)

Gelt) = R IcB(r) (4)

Equations (1) and (3) pertain to the solution of the
state-regulator problem while (2) and (4) occur in the con-
tinuous Kalman filter algorithm. For convenience a brief
discussion of each subject is included. First the state-
regulator problem: given a linear, time-invariant system

(9] '.;

X(t) = A x(t) + B u(t) | ?

~

y(t) C x(t)

~

where u(t) is not constrained, a control law is to be found

such that the quadratic cost function

t
£
I o= FXT(eIRax(t)] + 3 [ [xT(8)Qx(t) +uT (t)Ru(t) At
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is minimized. Such an optimal control exists, provided

that gf and Q are positive semidefinite and R is positive

definite, and is given by

1

ue) = R x(0) Aig () x(t)

where g(t) is the unique solution of the differential Riccati

equation

1

B(t) = =-P(t)A - ATR(t) + P(t)BR 1BTP(t) - @

with the boundary condition g(tf) = Pei tg is a specified
value. The RICATI subprogram is used to determine the control

gain matrix

G.(t) = RIBTR(t)
such that the closed-loop system

x(t) = A x(t) +B u(t)

u(t)

-gc(t) §(t)

y(t) = C x(t)

is optimal with respect to the specified performance measure.

The computer can solve for either or both the transient and
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the steady-state control gains.2 Notice that the gain matrix

Gc(t) output by the computer does not include the negative
sign of the feedback loop.

For the second type of problem, a continuous Kalman
filter is to be obtained and the subprogram RICATI is used
to find the optimal filter gain matrix for the design. Here
again the user has a choice of getting either or both the

transient and the steady-state gains.3

The problem to be
solved is to find an optimal filter for a linear, time-

invariant system {10]
x(t) = A x(t) + B w(t)
z(t) = C x(t) + v(t)

where y(t), the measurement noise, is uncorrelated and has

covariance matrix Q. The random process forcing input w(t)

~

2'I‘he conditions sufficient for steady-state control
to exist are that the system be completely controllable, i.e.,
the matrix [B AB ... AP-1p] be of rank n where n is the
order of the plant, that no ferminal cost be considered in the
cost function and that A and B be time-invariant. [9]

3Sufficient conditions for steady-state filter gains to

exist are [10]:
(a) the plant must be completely observable
(b) the plant must be time-invariant, i.e., A, F
and C are independent of time -
(c) the random processes v(t) and w(t) are stationary,
i.e., R and Q are constant.
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e

is also uncorrelated and has covariance matrix R. The

expected values of the initial states are
X, = Elx(t))]
The solution is obtained by choosing the filter gain matrix

G () = R IcP(b)

such that the plant, measurement and Kalman filter are

x(t) = A x(t) + B w(t)
z(t) = C x(t) + v(t)
x(£) = A R(t) + G (t) [z(8) - C %(8)]

These equations are also presented in block diagram form in

Figure 3-41.
The purpose of the subprogram RICATI is to solve the
differential Riccati equation

B(t) = aFt) + F(a" + 508" - Fre)c"r Ich(e)

with initial condition
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- - - - ~ - .7
P(t,)) = P, = E[X(t)) - x ) - (x(t)) - x

)71

to calculate the filter gain matrix gf(t).
a. Input
A comron input format applies to both state-
regulator and Kalman filter problems. However the matrix

definitions differ.

ﬂy(t)

B
v(t)
x(®) . X ()
== S¢ /
A A

[ ¢ ke

Fig 3-41 Continuous Kalman Filter Block Diagram

(1) Basic Input
The input data deck first card contains the
problem identification, the order of the plant (N < 10), the

number of control inputs (M < 10) and the number of measured
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n_________mm_ o

outputs (L < 10). Since these numbers define the dimensions

of each subsequent matrix, extra care is suggested. Next

the plant matrix A (NxN) is entered one row at a time. Simi-
larly the control matrix gT (M x N) and the observable output
matrix c (LxN) are given. The above forms the basic input
and needs only be included once.
(2) Control Option Input

This portion of the data is used when solving
state-regulator problems. The letter C is printed in the
first column of the first card to indicate that option con-
trol is selected. On this same card, if and only if transient
gains are desired, the user gives the initial time tor
the final time tf and the number of time points of the control

gain matrix ( NPOINT ) to be printed. If the steady-state

solution only is desired, the letter C still appears in

column one but the rest of the card is left blank.

Next the control weighting matrix R (M xM)
is entered, followed by the state weighting matrix Q (NxN).
If and only if the transient response of the gains was
requested, by assigning non-zero values to to, tf and n
points, the terminal boundary condition matrix g(tf) (N x N)
is given last. |

(3) Filter Option Input

The first card of this portion of the data

deck indicates a Kalman filter problem by the letter F

punched in column one. As for the control option input,

the time interval and number of points of the filter gain
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matrix transient response to be output are also entered on
that first card, if and only if the transient response is
desired. Next, the measurement noise covariance matrix

R (LxL) and the random input covariance matrix ¢ (M xM)

are entered, one row at a time. Finally, if and only if the
transient filter gain solution was requested by assigning

non-zero values to to, t., and NPOINT the initial boundary

f
condition matrix ?(to) (N xN) is given.
(4) Problem Termination Card

The user may ask for several different com-
puter solutions of the same basic problem by stacking the
control input cards for transient response and the control
input cards for steady-state solution, or the filter input
cards for steady-state solution and the filter input cards
for transient response. Terminaticn of a given problem is
indicated by a blank card. As usual, many problems can be
executed under the same run by placing the complete data
decks one on top the other.

The following input format table summarizes

the above.

Entry Input Description Format Columns Used
1 Problem identification, 524, 1-20,
Basic order of the plant (N < 10) 12, 21-22,
number of control inputs 12, 23-24,
(M < 10),
number of measurements 12 25-26

(L < 10).
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g

Entry

Basic

Basic

Basic

5

Control
Option

6

Control
Option

7

Control

Option
8

Iff
NPOINT

# 0

Control

Option
9

Filter
Option

10

Filter
Option

11

Filter
Option

Input Description

Plant matrix A (N xN) (one row
per card for N < 8; one row
per two cards for N > 8)

Distribution matrix §T (M x N)
(one row per card for N < 8;
one row per two cards for N > 8)

Measurement matrix C (L xN)
(one row per card for N < 8;
one row per two cards for N > 8)

Letter C,
initial time to,
final time t_,

number of pofnts (NPOINT)

Control weighting matrix R (M x M)
(one row per card if M < §; one
row per two cards for M > 8)

State weighting matrix Q (N x N)
(one row per card for N < 8;
one row per two cards for N > 8)

Terminal boundary matrix E(tf)
(N x N) (one row per card for
N < 8; one row per two cards
for N > 8)

Letter F,

initial time t,.,

final time t_,

number of pofnts NPOINT

Measurement noise covariance
matrix R (L xL) (one row per
card for L < B8; one row per
two cards for L > 8)

Random input covariance matrix
Q (MxM) (one row per card for
M < 8; one row per two cards
for M > 8)
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Format

8E10.0

8E10.0

8E10.0

al,
Fl10.3,
Fl0.3
I3

8E10.0

8E10.0

8E10.0

Al,
Flo0.3,
F10.3,
I3

8E10.0

8E10.0

Columns Used

1-10, 11-20,
21-30, etc.

1-10, 1l1-20,
21-30' etc.

1-10, 1l1-20,
21-30, etc.

1,
11-20,
21-30,
31-32-33

1-10, 11-20,
21-30, etc.

1-10, 11-20,
21-30, etc.

1-10, 11-20,
21-30, etc.

1,
11-20,
21-30,
31-32-33

1-10, 11-20,
21-30, etc.

1-10, 11-20,
21-30, etc.



Entry Input Description Format Columns Used

12 Initial boundary value matrix P(to) 8E10.0 1-10, 11-20,
I£€ (NxN) (one row per card for ~ 21-30, etc.
NPOINT N < 8: one row per two cards
#0 for N > 8)
Filter ‘
Option é
? 13 (blank card) (indicates problem 8E10.0 (blank) %
| termination) ,

Table XVI - Input Format Table for RICATI

b. Output :
The problem identification and the A, §T and C
matrices are listed for reference. Then the option requested

is indicated and the R, Q and P matrices are printed. Finally,

-~

"steady-state solution" or "transient response" is printed,
followed by the gain matrix Gf or Gc.

¢c. Examples

Two problems are worked out to illustrate the use
of this subprogram.
(1) Example One

In the first case we assume the plant

x (&) = x,(t)

;‘czm = u(t)

and wish to determine what must the control gains be to

minimize the performance measure

Pornay PP UM Sotr i
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3= lay %, 2(8) + ay%,2(6) + Ru?(B)] at

where the weighting factors are 9 = 4.0, 9, = 0 and

5 R = 50. The control option is used. The elements necessary

for the data deck are:

(o 1]

‘0
"
)

0]}

(Note that C is not used in the calculations but must be

included since the input table requires it.) f

o R = 50.
|

]

i Both the steady-state and transient solution are desired.
|

0O
]

For the transient part of the problem, t; = 0.0, t. = 10.0 !
i and NPOINT = 020 are selected with the initial condition
P(tg) = 0.

The control and data cards are then

// (standard 0S JOB card)

// ~ EXEC ~LINCON

3 //LINK,SYSIN DD ~*




e ey s

[ ~~INCLUDEASYSLIB (RICATI)
F o
, //GO .SYSINADDA* ;
| RICATI CONTROL TEST 020101
0.0 1.0 E
0.0 0.0 3
0.0 1.0
1.0 0.0
C
50.
4.0 0.0
0.0 0.0
C 0.0 ‘ 10.0 020
50. , (
4.0 0.0 |
0.0 0.0
0.0 0.0 :
0.0 0.0

(blank card)
L/
The solution in Fig. 3-42' shows the requested steady-state
and transient response.
(2) Example Two

The second problem is to find the optimal

Kalman filter gain matrix for the following system:
0 1 0

x(t) = x(t) + w(t)
~ 0 -4.6 - 0.1

Vi A - b m——— e arm —
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Figure 3-42 Control Option Test for RICATI
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The random input w(t) is white noise with variance Q = 10.

The observed variable is given by

z{(t) = [1 0] x(t) + v(t)
where v(t) is also white noise with variance R = 1077,
From the above it is easy to extract the data necessary to
solve the problem by the use of RICATI. Writing down the

elements one gets:

tp

(]

|
o

-

[ AT |
o
3

]

°

=

0 -406

]
i
c = [1 0]
|
| R = 107
Q = 10

The initial condition matrix P(to) is chosen to be

P(t,) = E o]
0

The time is specified as being ty = 0.0 and te = 0.5 and a

number of points to be output is NPOINT = 10. The computer

cards to solve both for the transient and steady-state are

—— s nm




'!______________._..,._._, ——

// (standard OS JOB card)
// .~ EXEC_LINCON
//LINK.SYSIN, DD, *

~ ~ INCLUDE _ SYSLIB(RICATI)
/t

//GO.SYSIN DD *

RICATI FILTER TEST 020101

0.0 1.0
0.0 -4.6
0.0 0.1
1.0 0.0
F 0.0 0.5 010
0.0000001

10.

F

0.0000001

10.

/*

Results presented in Fig. 3-43 indicate that the algorithm
used by the computer to find the steady-state gains is not
good enough for the problem. The transient response final
values are used as steady state gains.

8. Discrete Time Kalman Filter (Kalman)

This double-precision subprogram is used to calculate
the discrete Ralman filter gain matrix Gy - The theory of
the discrete Kalman filter can be obtained from many textbooks

and articles and is not reproduced here. For example see [10]

and [11].




UPTINAL CLNTRUL/ZKALYAN §ILTLR PRNGPAM
PROALEN TDENTIFICATICN ~ RICAT] FILTER TEST

000000200000 00008000000000009 02000000 0a000ESR
THE & MATRIX

3:0 -4:803833688 98
TME 8 RATRI X
0.0 1.000000000-01
THE C MATRIX
1.000000000 00 0.0
[ 1 TI13711] swe [ 1] .

eos FILTER OPTION Gee

THE R MATRIX
1.000000000-07

THE O MATREX
1.000000000 01
INITIAL CONODETIONS

0.0 0.0 .
0.0 0.0
L ] L ] 80008009008 0098 000000800
' L]
i 0.9
0.0 0.0
c} :e ., 4.995998960-02
le 13205510 01 ©.858216700 02
cx i 9.999997910-02
4.0307599¢D 01 7.822250930 02
c} uE =0 1. 489565965001
3. 990694580 0L 8.0801064403 02
GI!:E =, 1.9$9999340-C1
o.53§nvcs;o oL 9.148048770 02
st: =, 2.495999480-01
4.053201820 O1 8.162348580 02
Tiee -
“{“s =, 20999999370-C1
4.025736700 0L 8.14368246D0 02
‘z{;i », 3.49999927C-01
4.035728330 OL 0.143%42270 02
czlzs s, 3.99999917C-01
& 33131:20 (1 0.143%65030 02
1‘~e ., 4.455999C60-01
GA ng ‘e
+ 4,038731320 0L 9.163%563460 02
6: e = 4. 9959989 0~01
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Figure 3-43 Filter Option Test for RICATI
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The following block diagram, definitions and equations
are nonetheless included to summarize the ideas and clarify

the notation adopted in this discussion.
v,

~k
W, +
~k
163
+

i

ﬁ

% |k-1

Fig 3-44 Discrete Kalman Filter Block Diagram

From the diagram, one gets the discrete time system

state equation

Xeap — 0PI

and the measurement equation
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Ek = H Ek + Yk

Each element can be briefly defined and the matrix

dimensions noted as:

X, ¢ state vector (N x1)
$ transition matrix (N x N)

W, ¢ system random input (L x1)

I : distribution matrix (N x L)
Z, ¢ Mmeasurement vector (Mx1)
H : observation matrix (M xN)
v, : mMmeasurement noise (Mx1)
gk : gain matrix (N xM)

The problem is to minimize

A

T ~
Ty = BUx = X000 (kg = %))

with respect to Gk' Note that Jl is a scalar.4

431 actually is the trace of the cost function

o= Blix = %) (% - fklk?]

where J is a (N xN) matrix.
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The solution to the problem is

T T -1
Sk = Bxjk-1 B [HPy ) 8 + R (1)
Peixk = 2= Gl Byjpy (2)
P = ¢P . 0 40 (3)
“k+l|k ? Zklk ¥
where
Xelk = Xx)k-1 * GklZk T HX k-] (4)
and
Xelk-1 = ¢ ¥k-1]k-1 (3

given the initial conditions

?SOI"I = E[i‘(O)]
and
P = E[(x - x )21
~0]-1 7 2ol-1
The terms associated with the above equations are ;
!
;A

ii defined as
|

\ Pklk : (NxN) matrix of the covariance of error of
i = the estimate at k given observations at
' times vp to and including time k.
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Pklk-l : (NxN) matrix of the covariance of error of
N the one-step prediction at k given observations

at times up to and including time (k-1)
R : (MxN) covariance matrix of the measurement
N noise
Q : (NxN) covariance matrix of the random
- input

The matrix
_ T, .T
Q = TEMWW™) T

is computed from the parameters IT (L xN) and E[kakT] (LxL).
The purpose of the subprogram KALMAN is to solve the
recurrence relations (1), (2) and (3) for a specified number
of iterations N and print the filter gain matrix Gk as a
function of k.
a. Input
Since many problems are encountered where the
designer must compensate for time-varying environment by
letting the covariance of the observation noise be variable,
it was decided to permit the user to define the R (M x M)
matrix with an external subroutine. The subprogram KALMAN
thus is accessible under Mode Two of operation only. Also
note that the subprogram is double-precision.
The first input to be entered is the covariance
of the observation noise via the double-precision subroutine
RDEF (R,NP,M) performed by the main program where M is the

order of the matrix. The parameters NP and M are directly
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available from the main program and must not be assigned any
value here, i.e., leave them as NP and M. The subroutine

is then
SUBROUTINE RDEF (R,NP,M)
IMBLICIT REAL*8 (A-H, 0O-Z)
DIMENSION R(20,20)
FORTRAN statements defining
the R matrix (see example part c.)
RETURN
END
Next the data deck is punched. The problem
identification, the order of the system N, the dimension of
the random input vector L and the number of outputs M are
given on the first card and are followed by the Q(N x N} matrix, the

I'T (L xN) matrix, the E[WT] (LxL) matrix, the H (MxN)

-~

matrix and the initial condition matrix Pol-l

accordance with the input format table shown below.

(NxN) in

Entry Input Description Format Columns Used
1 Problem identification, order 5a4, 312 1-20, 21-22,
of the system (N < 10), 23-24, 25-26

dimension of the random input
vector (L < 10), number of
measurements (M < 10)

2 ¢ (NxN) matrix (one row per 8E10.0 1-10, 11-20, !
card for N < 8; one row per 21-30, etc. i
two cards for N > 8) §

3 [T (L x N) matrix (one row per 8E10.0 1-10, 11-20, E
card for N < 8; one row per 21-30, etc.

two cards for N > 8)
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Entry Input Description Format Columns Used
4 E[WW ] (LxL) matrix (one row 8£10.0  1-10, 11-20
per card for L < 8; one row 21-30, etc.
per two cards for L > 8)
5 H (MxN) matrix (one row per 8EL10.0 1-10, 1l1-20,
card for N < 8; one row per 21-30, etc.

two cards for N > 8)

6 Number of time points to be 8E10.0 1-10
performed (NP)

7 Poi_q (NxN) matrix (one row 8E10.0 1-10, 1l1-20,
pgi %ard for N < 8; one row 21-30, etc.

per two cards for N > B)

Table XVII - Input Format Table for KALMAN

b. Output

The problem identification, the discrete system

¢ matrix, the transpose of the gamma matrix, the E[QWT]

-~

matrix (listed as the W matrix on the printout), the measure-

ment matrix H, the initial value of the observation noise
covariance matrix (at NP = 0) and the initial condition matrix
are listed for reference. Then the filter gain matrix is
printed as a function of the time index k, from k = 0 to
k = NP.
¢. Example

It is desired to estimate position and velocity

from noisy position measurements only. The system equations

are

xl(k+l) 1 .5 xl(k) .125
= + w(k)
xz(k+l) 0 1 xz(k) .5
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z(k) = (1 0] xl(k) + vi(k)

xz(k)

where the perturbation acceleration w(k) has a root mean-
square magnitude of 2 meters per second.

From the above information, one can see that

¢ = 1 .5
0 1
rf = .25 .s)
E[@@T] = mean-square magnitude of the

perturbation acceleration

4.

The matrix Pol-l is assumed to be

P = 10 0
~0]-1

and the covariance of the observation noise is assumed to be

4+ (- H® for 0 < NP < 10
R =
4 for 10 < NP
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1 i The number of time points to be computed is chosen to be 20
ji‘ and the following computer card deck is set up:
// (standard OS JOB card)
// ~ EXEC.LINCONF
//FORT .SYSIN.DD,.*
SUBROUTINE RDEF (R,NP,M)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION R(20,20)
po 1 1I=1,M
- SRR TR - *pO "I JgIM " % T °
IF(NP.LE.10) R(I,J)=4.+(-0.5) **NP

1 IF(NP.GT.10) R(I,J)=4.

RETURN
: END 1
//LINK.SYSIN.DD, *

~~INCLUDE .SYSLIB (KALMAN)

~~ENTRY ., KALMAN

/* .
//GO.SYSIN,DD,* ﬁ
KALMAN TEST 020101

1.0 0.5

0.0 1.0

0.125 0.5 i
4.0 {
1.0 0.0 %
10.0 0.0

e e ——— - R i




DISCRETE TIME KALMAN FILTER PROGRAM
PRCBLEM IDENTIFICATION = KALMAN TEST

Thé PH1 MATRIX
Jofpoooom 00 1EREEREERS
THE GAMAA MATRIX
1.253€00000-01 $.00600C00D~01
THE W MATRIX
4.00000000C 00
THE M MATRIX
1.00000020C 00 0.0
THE A BATARIX
$.00003000C 00
INITIAL CCNOITICAS

000006000 01 0.0
3:8 1.000900000 O1 -

sSessasssesassse aee essen .
Ks 0 ) . ) . .
P - - g - < LA ., t‘ s - . [ 3 -g & o » - *. o @~ g -. @ L ] -~ - o . - - - * - * @& . rd - -
S R Secerco01 0.0
K = 1
GAINS
8.272944570-01 5.587582120-01
X = F ’
GAINS
$.54506895£=01 $.953565580-01
camns 2
$.2695826400-01 $.268080571C-01
X = &
GAINS )
$.706002810-01 4.261782710-01 i
X = ]
GAINS
$.47407715C-01 3.82$255070-01
K = [
GAINS
$.21220326C-01 3.580885610-01
K= 7
GAINS
$.121724200-01 3.522912470-01
chns °
5.06408851C~01 3.506715420-01
K = 9
GAINS
$.05603350C-01 3.51571£8950-01
chms 19 gigﬁf‘;:7an o1 7
$.051432270-01 3.51860€460-01 . ; 3.51732164C-01
i, SHitsomecor ;
§48%300933c-01 3.520437$50-01 . . 3.517210530-21
N =
Ans 12 85t 37730001 5173
§24350s030-01 3.51961838C-01 : N 3.517321670-01
-
chns '3 45T 214a80-01 '
$.052559030-01 3.516521610-01 S 3.317329130-01
=
Sins 14 - $48%srse10-01 7 ‘
§2333035200-01 3.51777¢926-01 oo 3.517330250-01 i
K s 15 i H
AN Ey
§2 583 seso70-01 3.51743062C-01 { :

Figure 3-45 Discrete Time Kalman Filter Test
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0.0 10.0
/*
The results of this run are shown in Fig. 3-45.

9. Discrete Time Linear State Regqulator (STREG)

This double-precision subprogram is used to compute
the discrete linear regulator feedback gains F(NS -K). The |
discrete linear regulator problem can be stated as [12]:

given a time-invariant discrete system represented by

x(k+l) = Aax(k) + Bw(k)

o v~ o .

where the states and controls are unconstrained, find an

optimal control u*(x(k), k) that minimizes the performance

index —
i
J = %‘-xT(NS) H x(NS)
N-1
+3 T 1xT(k) Q x(k) + wl(k) R w(k)]
k=0 - - - - - -
where

x(k): state vector (Nx1)

A : coefficient matrix (N x N)

distribution matrix (N x M)

w(k): system input vector (Mx 1)
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J : performance index (scalar)

- H : real symmetric positive semi-definite matrix

i - (N x N)
Q : real symmetric positive semi-definite matrix
- (N x N)
R : real symmetric positive definite matrix (M x M)

NS : fixed integer greater than 0 (number of stages)

After solving the problem, one realizes that the
optimal feedback gains can be evaluated by solving the

following two equations only:

FI(NS-K) = -(R+BTP(K-1)B] * x [BTP(K-1)A] (1)
P(K) = [A+BF(NS~K)] P(K-1)[A+ BF(NS -K)] (2)

+ FL(NS - K)RF(NS -K) + Q

where F(NS - K) is the feedback gain matrix and P(0) = H.

~

The STREG subprogram determines the F (NS - K) matrix

for 0 < NS < 999 as K varies from one to NS. It also gives

the final value of the real symmetric P(K) matrix, i.e.,
P(NS). From these results the user can design the optimal

discrete system

§(k+l) = A x(k) + B w(k)

w(k) = F(k) x(k)
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where k = NS - K (a block diagram representation of the system
is shown in fig. 3-46). Note that P(NS) is presented so one
can also calculate the minimum cost for the NS-stage process

given some initial state X, using the relation ([17]

Nll-'

N(3_t°) P(NS) x

~0
a. Input
The first input data card consists of the problem
1dent1f1cat10n, the A matrlx dimen31on (N < 10) and the number

e ee o ®e ®e¢ - e o @ e v @ o - - e e e cow e © e « - .. P

of inputs (M < 10). Then the A (NxN), BT (MxN), H (NxN),

-~

Q (NxN) and R (M xM) matrices are presented one row at a time.

Finally the number of stages (0 < NS < 999) is given. The

following input format table further describes the required

data cards.

Entry Input Description Format Columns Used

1 Problem identification, 5a4, 212 1-20, 21-22,
system order (N < 10), 23-24
number of inputs (M > 10)

2 A(N x N) matrix (one row per 8E10.0 1-10, 11-20,
card for N < 8; one row per 21-30, etc.
two cards for N > 8)

3 B (M xN) matrix (one row per 8E10.0 1-10, 11-20,
card for N < 8; one row per 21-30, etc.
two cards for N > 8)

4 H (NxN) matrix (one row per 8E10.0 1-10, 11-20, "
card for N < 8; one row per 21-30, etc. ;
two cards for N > 8)

5 Q (Nx N) matrix (one row per 8E10.0 1-10, 11-20,
card for N < 8; one row per 21-30, etc.

two cards for N > 8)




i x (k+1) x (k)
i Unit
: B e :>+ Delay

o o e *+ & @ o @ ¢

k-

w(k)

F(k)lc

Figure 3-46 Discrete Linear Regulator Block Diagram




Entry Input Description Format Columns Used

6 R (Mx M) matrix (one row per 8E10.0 1-10, 11-20G,

card for M < 8; one row per 21-30, etc.

two cards for M > 8)
7 Number of stages for the I3 1-3
process (0 < NS < 999)
b. Output
The problem identification, the discrete system
e matrix, the transpose of the distribution matrix and the
g, 9 and g matrices are listed for reference. Then the feed-

back gain matrix F(NS - K) is printed as a function of the

"= -backwhrd’ tfme index (NS -K) for K = 1 to K = NS. Finally, the
real symmetric P(NS) matrix is given.
c. Example
Given the linear discrete system [12]
x(k+t1) = [0.9974  0.0539] =x(k) + [0.0013] w(k) 'j
-.1078 1.1591 0.0539
the feedback gain matrix F(NS - K) is to be determined which :
minimizes the performance measure |
N-1
J = 2 7700.25 x,2(k) + 0.05 x,2(k) + 0.05 w2 (k)]
2 1 2
k=0
224
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The data are then:
% = 0.9974 0.0539
[- .1078 1.159;]
B' = [0.0013  0.0539]
=0
9 = 0.25 0.0 L a ea
A ‘[o‘.‘o "‘o.ds] sttt TE
R = 0.05

Order of the system, N = 2

Number of inputs, M = 1

For this problem NS is chosen to be 200 and the
computer control and data cards are
// (standard OS JOB card)
// ~-EXEC.LINCON
//LINK,SYSIN.DD. *
-~ INCLUDE SYSLIB (STREG)
/"
//GO.SYSIN.DD,*
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1
i

STREG TEST 0201
0.9974 0.0539
-.1078 1.1591
0.0013 0.0539

0.0 0.0

0.0 0.0

0.25 0.0

0.0 0.05

0.05

206 < ST ettt e oce oo -
/*

The results presented in fig. 3-47 show that
FP(NS = K) approaches a constant matrixs F as XK + 200.

10. Multiple-Input Multiple-Output Control System
Decoupling (MIMO)

This subprogram is used to determine a feedback con-

control law

u{t) = G r(t) + F x(t)

5If a system is completely controllable and time invariant,
H = 0, and R and Q are constant matrices then [12]

F(NS-K) -+ F (a constant matrix) as NS -+ o
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OISCRETE L INEAR STATE REGULATCR PROGRAM
PAGALEM TOENTIFICATICN = STREG TEST
SPSPEILEEIUIAVINSICUTASE SRS ISR IBI ST SRR ENESY

ThE A MATRIX

9.67603CN00~-01 $.360CCCCCD~02
=1.07802000C~01 1.154104QC00 00
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1+30000000C-03 5.3966C0000~-02
ThE H MATRIX
.° .o
§:3 8:8
THE Q MATALIX
2.500C00000-0 Q.0
0.0 ° t §.00€0C00C0-02
INB R PATRIX
$.000006000~02
——————e
VRS SERCEB RSB FAS a8 8998 'y
K= 14
% s 199 GAINS
GAINS ~5.522296540-01 ~5.966015%99C 09 - @4
Q.3 0.0 K * 13 . .o - ce & & @ % o7 -
TA « ®4 -+ oAl ¢ : -
. GAINS: . - @ T «5.522296540~-01 ~5:965015050 09
- ® . < - -§.107 257330-04 -€.264331870-92 X = 12
X = 197 GAINS
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~86,532668690=03 ~1.473644140-01 K= 11
X e 196 GALNS ) .
chIvs =5.£22296540-01 -5.66$015¢D°00 ° """
~1,6648541200-02 ~2.61281121C-01 K=2 10
K » 195 GAINS
e ~5.522296540-01 ~5.569015CS0 00
~2.€3785%110~02 -4,122C£67€50-01 X = 9
K = 196 ~5 ‘ g§296540-01 S$.568
GAINS o5 -5 £135€50 00
~3.121841770-02 ~8.08210446C-01 K = Py
K e 193 GAINS
CAINS =5,522296540~01 -5.665015CS0 02
=2.438354540-02 ~8.561395580-01 K = 7
X = 192 -%‘g3§29656c-01 -5.565015C52
GAINS y . 3¢s0 co
«2.38%5251960-04 ~1.156728350 00 K= &
K s 101 GAINS
GAINS «5,5222948540~01 ~5.965015CSD 09
&.91294170-02 ~1.51736€520 Q0 X = 1
X = 190 GALINS
chns ~5,522294540-C1 ~5.565315CSC 09
1+297456460~01 =1.62C526140 00 K = s
¥ s 189 GAluS .
chins ~5.522296550~01 -5.665015C50 09
2.617541560-01 «2.3%3169430 00 x(- 3
GAINS
: 35‘.' ~9.522296540-01 -5.%68C15050 00
g052697159°'°l -2-7935!6660 (1] K= 2
GAINS
2‘;5101 -5.%22296560~01 ~5.569012C%D QO
g.uzsoono—'ot' T =3.220042300°09F %7 K= 1
x = 188 GAINS
oiifs ~5.522296540~-01 -5,$65012C$0 00
T.191403160-01 «3.6113CS$56C 00 s n
AIN
}t:sln5 *g «522296540~01 ~5.54646015C80 0O
i i.932619210~01 =3,953922550 00 SEGARAS AT AL SIS VRARAREASE SIS0 0000 InANN S
! K = 184
{ GAINS
' 12537620300 00  =4.24157¢15C 09 AND THE "z°°‘ SATRIX 1S
. 2626130 4 .
$:81%38828 3 LRGN

Figure 3~47 Discrete Linear State Regulator Test
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for an Nth order system

%(t) = A x(t) + B u(t)
y(t) = C x(t)

th input

such that the control system is decoupled, i.e., the i
ri(t) affects only the ith output Yi(t)' Notice that the
subprogram applies only if the number of inputs is exactly
the same as the number of outputs. The computer calculates
both the feedback gain matrix F and the command input gain
matrix g. The user only has to feed in the coupled system
matrices A, Band C and specify, arbitrarily, the desired
closed-loop poles of each ith transfer function Yi(s)/Ri(s).

The theory regarding the algorithm used for decoupling
is not presented here. For this, the reader is referred to

[1]. Sufficient information is included, however, to illus-

trate the concepts and to permit easy use of the subprogram.
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a. Input

The problem identification, the system order (N
less than or equal to ten) and the number of inputs and outputs
(M less than or equal to ten) are given on the first card
according to the format shown on the input format table for
MIMO. Then the A matrix (NxN) is entered, followed by the
gT matrix (MxN) and the C matrix (MxN), one row at a time.
Note that B is transposed and the number of inputs must equal
the number of outputs.

Next the option card is punched. If the option

is blank,

. th? ;?lfxa.s.e.: variable form of theq degoupled system is-

cbtained and the subprogram returns to begin another problem.

If options P or F are selected, the control law E(t) necessary

to achieve a decoupled system with closed-loop poles at loca-

tions specified by the user is determined. 1If option = F,

the next cards give the desired poles of Yl(s)/Rl(s).
According to the convention established before,

if option F is selected the real part of a root is entered

as being positive if it lies in the left-half plane, negative

if in the right-half plane and only the positive imaginary

part of a complex pair is given (see p. ). If option P is

selected, the coefficients of the characteristic polynomial

of Yl(s)/Rl(s) are entered in ascending order, the coefficient

of the highest order term always being unity.

The subprogram then returns to read option P or

F and the second decoupled subsystem desired closed-loop poles,

and so on for the M subsystems.
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The design of a decoupled system requires two
separate runs of the subprogram. First the user must determine
if it is possible to decouple the system and, if so, obtain the
order of each decoupled subsystem Yi(s)/Ri(s). This is done
ky leaving the option card blank. The order of the denominator
polynomial becomes the order of each decoupled suksystem
which determines the number of poles or the degree of the
characteristic polynomial to be selected for closed-loop
calculations.

Options P or F are selected for the second run
and .ches subprogram:conpuwtes the control law g(t) which
decouples the system and places the poles at the selected
locations. The following input format table summarizes the

pertinent information.

Entry Input Description Format Columns Used
1 Problem identification, order 5a4, 212 1-10, 21-22,
of the system (N < 10), number 23-24

of inputs and number of
outputs (M > 10)

2 A matrix (NXN) (one row per 8F10.3 1-10, 11-20,
card for N < 8; one row per 21-30, etc.
two cards for N > 8)

3 BT matrix (MxN) (one row 8F10.3  1-10, 11-20,
per card for N < 8; one 21-30, etc.
row per two cards for
N > 8)

4 C matrix (MxN) (one row per 8F10.3 1-10, 1l1-20,
card for N < g; one row 21-30, etc.

per two cards for N > 8)
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Entry Input Description Format Columns Used

|
|
! 5 blank = analysis only Al 1
E Option P = closed-loop

option polynomial input
F = closed-loop poles
input

6 Polynomial coefficients in 8F10.3 1-10, 11-20,
(iff ascending power of s 21-30, etc.
option (see complete description
=P) P- 31)

7 Roots of characteristic poly- 8F10.3 1-10, 11-20,
(iff nomial (one root per card) 21-30, etc.
option (see complete description
=F) P- 32)

The above information should become clear from the example
presented in part c.
b. Output

The problem identification, A, gT and C are listed
for reference. Then the decoupled phase variable represen-
tation of each subsystem is printed. The denominator poly-
nomial in ascending powers. of s is given first, followed by
the numerator polynomial both in unfactored and factored form.
It should be noted that the subprogram outputs the cancelled
zexros of Yi(s)/Ri(s) as well.

If closed-loop calculations have been requested,
by letting option equal P or F, each subsystem closed-~loop

polynomial is printed again both in unfactored and factored
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form. Finally the feedback gain matrix F and the control
gain matrix G are presented.
In terms of the original system, the resulting

closed-loop decoupled system is

x(t) = A x(t) +B u(t)
1
3
y(t) = C x(t)
u(t) = F x(t) + G r(t)

or, in a form suitable for graphical time response simulation,

x(t) (A +BF) x(t) + BGI (t)

y (t) C x(t)

It must be pointed out that not every system can
be decoupled. If it cannot, the subprogram is interrupted
and the message "BSTAR IS SINGULAR - THIS SYSTEM CANNOT BE
DECOUPLED" is printed. It is also possible that a subsystem
may be uncontrollable. This is indicated as such on the

output listing.

c. Example
A two~input two-output system [13] is to be

decoupled both during transient-period and steady-state.
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The first subsystem must approach a second order response to
a step input with a natural frequency of 10, a damping factor
of 0.4 and no steady-state error. The second subsystem must
also approach a second order response to step input but with
a natural frequency of 4, a damping factor of 0.6 and no
steady~-state error.

The original system is shown both in block diagram

and signal flow graph form in Figures 3-48 and 3-49.

Y, (&)

u, (t) ‘ ‘
1 1 1
—ﬁl sS+7 \QT sS+12 ->

uz(t) T ‘ 0 : y,(t)
+ L
3|s+43 4 s+2 ‘ -

Fig 3-48 Multiple-Input Multiple-Output Control
System (Block Diagram)

1
4
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written as

Fig 3-49 Multiple-Input Multiple-Output
Control System (Signal Flow Graph)

The state variable and output equations can be directly

-12x, + %X, + 2x
-7x2 + ul
4x1 - 2x3 + X,

~-4.3x, + u
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From these, the
to be:

A = [-12 1
0 -7

4 0

| 0 0

gT =[o 1

LO 0

c = [1 0

0 0

matrices A, BT and C are seen

2 0]
0 0

-2 1

0 -4.3
0 0]
0 1]
0 0
1 0|

A first run of the subprogram can be made to

verify if it is possible to decouple the system and find the

order of each subsystem.

//
// ~ EXEC.LINCON

(standard 0S JOB card)

//LINK.SYSIN . DD.*
~~INCLUDE.SYSLIB (MIMO)
/*

//GO.SYSIN . DD.*

MIMO TEST ONE 040202

-12. 1.0 2.0 0.0
0.0 -7.0 0.0 0.0
4.0 0.0 -2.0 1.0

The computer cards are




0.0 0.0 0.0 -4.3

0.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0
1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0

(blank card)
/*

The result shown in Fig. 3-50 reveals that both
subsystems are second order. The closed-loop pole locations
can then easily be selected for each subsystem. For the first
one, a second order response is desired such that w, = 1o,

£ = 0.4. Thus,

s 4+ 2tugs + mnz = s+ 8s + 100

For the second subsystem, the desired response requires that

w_ = 4 and g

n 0.6, so

52 + 2Cmns + w 2 s2 + 4.8s5 + 16

(s+2.4+33.2) (s+2.4-733.2)

The computer deck is then modified as follows:
// (standard OS JOB card)

// ~ EXECALINCON

//LINK.SYSIN A~ DDA *

~~INCLUDEASYSLIB (MIMO)
/*

236




MULT I~ [MPUT. MULTE-OLTHUT PRCGRAP
PECULEM IDENTIFICATION - ¥im) TEST CNE
000008 VSCESIEETNIRATERCOVSI 0000000 AR AR RS

€ A WATRIX

-1.230008 01 J.JcgecE 00 2.£0000¢ 00 0.0

00 -1.66écde a0 .4 0

4:CGCOCE 00 0sQ -2:d%000¢ 00 _1l0000a¢ ¢

20 0:0 co -42300C0€ 0
THE & waTRIX

2.0 1.00CC0% 00  C.¢ .

9:0 0.0 ¢ §:30000¢ 00
TwE C MATRIX :

1.GCCACE 00  GoO C.d 0.0

30 ] 1:60%%0F 00 020

SEEEIL LI AL IS PSRN S0 S0P 0000600000 RRS
DECIUPLEN PHMASE V2RRIAMALE WEFPRESENTATINN
ses SUASYSTEY
SENIPIATIP PCLYNCMIAL = IN ASCFANIMG OCWENS OF §
1.90735€-00 =3.81470¢-006 1.CC000% 00
NUASOATOR PCLYNAWIAL = [N 4SCERNING POUERS OF §
1.00J00F% J0
ssee SLASYSTEM 2 ‘
QEHOMINATOR POLYNCHIAL ~ IN ASCENDING PCWERS OF S

Je0 0.0 1.00000% 00
NUSMERATOR POLYNIMIAL = N ASCENDING POWERS OF §
3.0C00CE 0O

Figure 3-50 Computer Output for MIMO Test One

P )
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{
i
{
¢
)

//GO .SYSIN~ DD A%

MIMO TEST TWO 040202 {
-12.0 1.0 2.0 0.0 |
0.0 -7.0 0.0 0.0
4.0 0.0 -2.0 1.0 l
0.0 0.0 0.0 -4.3 (
0.0 1.0 0.0 0.0

0.0 0.0 0.0 1.0

1.0 0.0 0.0 0.0 ‘,
0.0 0.0 1.0 0.0 1
P

100. 8.0 1.0

F

2.4 3.2 ,.
/*

From the results given in Fig. 3-51, the decoupled
compensated system can be written in terms of the original

system.

g:c(t) = A + BF x(t) + BG r(t)
= [-12 1 2 0 "0 0
x(t) + r(t)
-156 4 T12 -2 100 O j
4 0 -2 1 0 0 |
36.8 -4 -18.4 -2.8 |0 16 ;
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MULTI=INPUT, MULTI=CUTPUT PRCCGRAM

PROALEM IDENTIFICATION - MIMQ TEST TwO
SRS PSP AL AL LA SINL SABRIRL0E000VINRGRIARARS

TrRE A MATRIX

~1.20000€ 0} .COCe0E 00 .07000¢ 00 0
33 5283 28 231200 93
0.00WO0E 20 0.0 'éo 0000E 00 «00000F 00
0.0 0.0 .0 ~4:30000€ 00
THE 8 MATRUIX
9.9 1.0COCUE 00  C.0 0.0
0.0 0.0 ¢e0 1.00000€¢ 00

Thé € wATRIX
};0000E 00 9.2 §:Sv0n0c 00 83
“......-‘...‘.‘........"...‘...‘..Q.“‘...‘

DECOUPLED FMASE VARTARLE REPRESENTATION
ssee SUISYSTEY 1
DENMEIMATOR POLYNOMIAL = IN ASCENDING DNWERS OF §
1e90735%=CH «3,81470F=Ceo 1.,00000% 00
NUYERATGR PCLYNOMTIAL ~ IN ASCENNING POWERS OF S
1.30300E Q0
seve SUASYSTEM 2
NDENIMINATAR PCLYNCPIAL = IN ASCENNING PCWERS OF S
2.0 0.0 1.CC008 00
NUMERATCR FOLYNIMIAL = IN ASCENDING POWERS OF S
1.0033¢CF CO
S0 AVOLOSVERLDINVSSREUV OISV 200900 S0SRERARERS
CLOSED~=LOIP CALCULATIGNS
PPN OIRPILP LA SRS RS BARA S AP EPERT IS IH SSRGS SARG S
eaee SUASYSTEW | '
CANSED=LOOP PCLYNCMIAL = IN ASCFNNING PLWERS OF S
l¢093005 02 8,U00CVE 00 10000 00

CLOSEO-LIIP POLES REAL PacT TMAGINARY PART
¢ LES . -4 Ecko000s 00 SN 0%
-4.C€37000€ 00 9:.1651516E 0)
oese SLASYSTER 2 ’
CLOSEO=-LONP PCLYNCHIAL = [N BSCENDING PIWERS OF §
1.60000€ 01  #.800CGE 00 1.0C0007 00
CLNSED=LDJP POLES Rgay saer MAGIMERY PART
3235303385 99 - '55003305 a3
<2:3999996¢ 00 . <2000003

SO 9ILNEL2S PR FRPIEAELIP IS IV OERUR I ANEREC R R
JRUGINAL STATE VARIABLES
FEEDAACK GAIN MATP X

~1.352)90E © 1,100GI% 01 1.20000 01  =2.000005 00
10323308 98 L:839¢38 88 -1:4299%: i §.28558¢ 93

. CCNTROL GAIN MATRIX

.

3008 ) : : o ce
Jo30d00E 02 D-Do0coe 01
L 22 LA ] PSSP PEORNINNRPREBRE S

Figure 3-51 Computer Output for MIMO Test Two

239




yl(t) = xl(t)
yz(t) = x3(t)

For comparison with the actual results given in
(13], the decoupled compensated system was simulated
using the subprogram GTRESP, for a unit step input. Note
that since GTRESP only allows for single-input single-output
simulation, two runs must be made. The data for the sub- -

program is

r(t) = 1.0
A = -12 1l 2 0
-156 4 12 -2
4 0 -2 1
36.8 -4 -18.4 —2.%

bT = (0 100 0 0l , for the first channel

QT = [0 0 0 16] , for the second channel 1
c = [1 0 0 o] , for the first channel

c = [0 0 1 o] ., for the second channel j?
KT =0




The ocutput yl(t) and yz(t) were to be plotted for
the first and second run, respectively. The complete com-
puter deck for GTRESP follows.

// (standard 0OS JOB card) ,TIME=2
// ~ EXEC .LINCONF
//FORT .SYSIN . DD .*

SUBROUTINE RFIND(T,R)

R=1.0
RETURN
END
/ *
//LINK.SYSIN,.DD,.*

~~ INCLUDE.SYSLIB (GTRESP)

~~ENTRY..GTRESP

/*

//GO.SYSIN.DD.*

GTRESP MIMO 04

-12.0 1.0 2.0 0.0
-156.0 4.0 12.0 -2.0
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4.0 0.0 -2.0 1.0

36.8 -4.0 -18.4 -2.8
0.0 100.0 0.0 0.0

1.0 0.0 0.0 0.0

0.0

1.0

0.0

0.0 10.0 0.01 20.

Y

/*

Note:

these bT and ¢
matrices are for
the first channel

simulation

For the second channel, the subprogram is run a second time

changing the bT and ¢ matrices appropriately. Figures 3-52A

and 3-52B show that the response effectively meets the

specifications given initially.
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IV. CONCLUSIONS AND RECOMMENDATIONS

The eighteen subprograms presented in the third chapter
constitute the actual linear control subroutine library and
this thesis, the user's manual that goes with it. The sub-
programs are easy to access and have proven to work well.
(They were all tested by solving several textbook problems
and, hopefully, all the "bugs" have been eliminated.) Very
little programming is necessary so the user can concentrate
on control problems rather than worry about computational
details. The LINCON library is indeed a nice tool for
analysis and design of linear control systems.

Furthermore, the library can still be easily improved and
expanded. Any FORTRAN subroutines can be modified and
replaced or new subroutines added by following the simple
instructions given in Appendix A. Note that, as was done in
reference [l], the subprograms were written to handle
systems of order less than or equal to ten. This should
take care of most of the problems encountered. 1If, however,
it becomes necessary to solve higher order systems using
these subprograms, remember that it can easily be accom-
plished by re-dimensioning the arrays of the appropriate
subroutines and replacing them in the load module (again
following the procedure given in Appendix Aa).

Finally, the following recommendations should be taken

into consideration
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(2)

by the users,

- always use the proper job control language
cards (i.e., the ones described in Chapters
ITI and III) to access the subprograms.

by the future LINCON library "programmer",

- before making any changes, be certain the
control cards are exactly those required
for the job. Double checking with a
consultant is always a good idea.

- always keep a copy of the subroutines'
listings and the card decks. It is not
possible to obtain any listings or card
decks from a load module.

- every modification should be documented
(nromplete with examples) and the information
distributed to the users.

- after changes have been implemented and
tested, a back-up copy of the new LINCON
data sets should be created to replace the
one on magnetic tape (as specified in

Appendix A).
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APPENDIX A

The LINCON Data Sets

All the linear control subprograms described in Chapter
III were placed in a load module (pre-processed by the
linkage editor) on Disk 02 of the Naval Postgraduate School
0S/MVT 1BM/360. Procedures were cataloged so anyone can
easily access the subprograms under OS Batch. The job con-
trol language cards to be prepared to use the load module
linear control library are given in Chapter II.

The following paragraphs now present the actual content
of the load module and explain the procedures to

- modify or add members

_ = change the data set's expiration date

~ delete the data sets

- list the member names and check the disk space

- compress the data sets.

Also, since a back-up copy of the data sets was created, the
procedure to restore the load module linear contrcl library
is given as well.

However, before any attempt is made to "play" with the
load module, it is suggested that the programmer familiarize
himself with the latest computer procedures and the linear
control subroutine library. References 14 and 1% should

also be read.
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1. Content of The Library.

The linear control subroutines library contains a
total of fifty-two subroutines. These are given in Table
A-1 indicating what subroutines are used by the subprograms.
A detailed description of most of the subroutines is presented
in [1]. Note that several minor changes had to be made to
the subroutines in order to implement the library. These
modifications do not, however, change the purpose or the
efficiency of the programs. Anyone interested in the pro-
gramming aspects of the library must utilize both the sub-
routine listings and reference [1].

2, Data Sets Utilities

It is probable that the content of the LINCON sub-
routines library will have to be modified at one time or
another. The following paragraphs outline the procedure
and give the job control language cards necessary to carry
out the changes.

a. Data Set Listing

The following set of control cards is used to
list the load module library content and the spaces it occupies:
// (standard 0OS JOB card)
//~ EXEC.PGM=IFHLIST
//SYSPRINT. DD . SYSOUT=A
//DDl. DD . UNIT=3330,VOL=SER=DISK02,DISP=SHR
//SYSIN DD . *
~ a LISTVTOC . FORMAT,VOL=3330=DISK02,DSNAME=F0718.LINCON

~ ~ LISTPDS A~ VOL=3330=DISK02,DSNAME=F0718.LINCON
/*
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€**)

[ N .

(g
*

BASMAT
CONOBS
FRESP
GTRESP (*)
KALMAN (*)
LUEN
MAIN
MIMO
OBSERV
PRFEXP
PRTLOC
RICATI (*)
ROOTS
RTLOC
RTRESP .
SENSIT
SERCOM
STRGG
STVAR

CALCU
CHREQ
CHREQA
DET
DIVP X N
DMULT X x
FORM b4
GRAPH X

HERMIT b ¢ X X

LINEQ X X
MAXI b 4

MPY b 4
MULT X X X
NORMP

PADD

PEXCG

PFEXP

PHNOM X

PMUL

POLRT b 4
PROOT X X X X
PVAL b 4

RUNGE b 4

SEMBL X b4 b 4 X X X

SIMEQ b 4 X X
SIMUL X X X
SORT X

SPLIT X X b4 X
STMST b4 X

SUBP X

TRESP b4

VECTEQ X

YDOT X

Y8VSX x

LR
H

L]

E R

LI

L

XXX

]

L

Table A-1l Subroutines Cross List

(*) These subprograms were loaded with all their necessary
subroutines. Each one of them requires an external subroutine
(see Chapter III).

(**) The subprogram MAIN is used to call all the sub-
programs (operation under Mode Three). It requires 450K core.
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All the subprograms and subroutines names are
listed in alphabetical order and the space occupied and
unoccupied given in terms of number of tracks and number
of cylinders.

b. Changing Expiration Date

The expiration date of the subroutine library
must be changed approximately every six months. The control
cards used to perform the task are:

// (standard OS JOB card)
// ~ EXEC . PGM=CEXPDATE
//SYSPRINT . DD . SYSOUT=A
//DD1l . DD .UNIT=3330,VOL=SER=DISK02,DSIP=0LD,DSN=F0718.LINCON,
// ~ LABEL=EXPDT=yyddd
/*

where yy=year (e.g. 80)

and ddd=day (e.g. 365)
The last expiration date given was 80182, i.e. 01 July 1980.
The computer centre normally sends a reminder listing the
data sets that are about to expire.

¢. Adding New Members or Replacing Existing Ones

The following control cards are required to add

a new member or replace an existing one:
// (standard 0S JOB card)
// ~ EXEC » FORTCL, PARM.LINK="'NCAL,MAP,LIST'
//FORT ,SYSIN A DD . *
Subroutine to be modified or added

/*
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//LINK.SYSLMOD, DD, UNIT=3330,VOL=SER=DISK02,DISP=SHR, - ~ « = = =~
// ~DSN=F0718.LINCON (member)

/*

where "member" is the name of the subroutine to be modified
or added. Note that the complete set of cards representing
the subroutine called "member" must be included. Before
placing the subroutine in the load module library, the com-
puter compiles it. If any error is found, the linkage is

not executed and the new subroutine is not placed in the load
; module. The user must carefully check the computer output
and make sure the message "member now replaced in data set"
is printed. If not, he must correct any error and redo the
procedure. Note that a lack of space can also prevent the
computer from linking to the load module. If this last

situation occurs the user should run the "“data set listing"

(part a) control cards to see how much space is available.
If sufficient space can be allocated, he must run the
"compressing data sets" control cards (part e) to release
any unused space in the data sets and then execute the
addition or replacement.
d. Removing Data Sets
It is sometimes necessary to remove undesired

members from the library (to create space or erase useless

programs). The following control cards are used to delete ;

one or several members from the subroutine library: !
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// (standard 0S JOB card)
// ~ EXEC ~ PGM=IEHPROGM
//SYSPRINT ~ DD~ SYSOUT=A
//DDl ~ DDA UNIT=3330,VOL=SER-DISK02,DISP=SHR
//SYSIN~ DD~ *
~ ~ SCRATCH ~ VOL=3330=DISK02,PURGE,DSNAME=F0718.LINCON,MEMBER=memberl
~ ~ SCRATCH ~ VOL=3330=DISK02,PURGE,DSNAME=F(0718.LINCON, MEMBER=member2
/*
where memberl and member2 are the subroutines to be erased
from the module. Here the programmer must be extremely
careful while using this utility. Mistakes can be very
costly (from scratching the wrong subroutine to erasing the
whole subroutine library). For instance, using
SCRATCH VOL=3330=DISK02,PURGE,DSNAME=F0718.LINCON

would erase the entire LINCON subroutine library. Be careful.

Also note that scratching a member does not make
the space it occupied immediately available. The "compressing
data sets" utility must be run to release the space (see
part e).

e. Compressing Data Sets

The following control cards are used to free
unavailable space in the data set:
// (standard OS JOB card)
// ~ EXECAPGM=IEBCOPY, REGION=100K
//SYSPRINT ~ DD~ SYSOUT=A
//DDl A DD A~UNIT=3330,VOL=SER~DISK02,DSN=F0718.LINCON,DISP=0LD
//SYSUT3~ DD AUN;T-SYSDA,SPACE=(CYL,(1,1)):DISP=(;DELETE)
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//SYSUT4 ~

DD AUNIT=SYSDA,SPA9§=(CYQ,}};I)),DISP=(,DELETE), -
//SYSIN ADD‘ - .

~ ~ COPY ~ OUTDD=001, INDD=DD1

/*

Note that the use of this utility is somewhat
dangerous since a power failure or a machine check during
compression will make the data set unaccessible by any
program [13].

3. Back-up Copy
A back-up copy of the partitioned data sets was made

by copying them onto the magnetic tape NPS 705, file Ol.
The control cards that were used to create it are:
// (standard OS JOB card)
//ONE ~EXEC ~ PGM=IEHMOVE, REGION=80K
//SYSPRINT ~ DD~ SYSOUT=A
//SYSUTL ~ DD .UNIT=SYSDA,SPACE=(CYL, (3,1))
//DDX .DD ~UNIT=3330,VOL=SER=DISK02,DISP=SHR
//TAPE .DD .UNIT=3400-3,VOL=SER=NPS705,DISP+(,PASS),DCB=DEN=3
//SYSIN. DDA * in colum 72

COPY ~ PDS+F0718.LINCON,TO=3400-3=(NPS705,1), ;

FROM=3330=DISK02,TODD=TAPE

/* hac;Lmnxls

Since it is possible that the data setsi‘may be

lost one way or another, it is imperative to have such a
back-up copy. To restore the LINCON data sets, the programmer

must first re-allocate space by running the following job

control cards:




’!=FIIE====llll==::;“.‘

// (standard 0S JOB card)
//TWO ~ EXEC .PGM=1EFBR14
//DDL ~ DD A~UNIT=3330,VOL=SER=DISK02,DISP=(NEW,KEEP),
// ~~DSN=F0718.LINCON,LABEL=EXPDT=yyddd,SPACE=(Cyl, (2,1,10))
/*

where yy=expiration year

ddd=expiration day
Finally, to restore the data sets one only has

to run the program given below.
// (standard 0S JOB card)
//THREE ~ EXEC ~ PGM=IEHMOVE, REGION=80K
//SYSPRINT ~ DD ~ SYSOUT=A
//SYSUT1 ~ DD ~ UNIT=SYSDA,SPACE=(CYL, (3,1))

//DDX ~ DD ~ UNIT=3330,VOL=SER=DISK02,DISP=SHR

//TAPE ~ DD ~ UNIT=3400-3,VOL=SER-NPS705,DISP=(OLD,PASS),DCB=DEN=3

//SYSIN ~ DD ~ * colum 72
+
~~ COPY ~ PDS=F0718.LINCON,TO=3330=DISK02, X
FROM=3400-3=(NPS705,1) ,FROMDD=TAPE
+

/* colum 16
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APPENDIX B

List of the Sources for the Examples of Chapter III

The following table lists the references from which

the examples worked out in Chapter II originated.

Section Example Reference
IIIB l.c Eveleigh, V.W., Introduction to
Control S¥stem, p. 568 (#3),
McGraw-Hill, 1972.
2.c Shinners, S.M., Modern Control

System - Theory and Application,
2nd ed., p. 364 (#7.26), Addison-
Wesley, 1978.

3.c Brogan, W.L., Modern Control Theory,
: p. 35 (#2.10), Quantum Publishers,
i 1974.
3.4 Ogata, K., Modern Control Engineering,
p- 517, Prentice-Hall, 1970
IIIC 2.c Ogata, K., Modern Control Engineering,
p. 275, Prentice-Hall; 1970
3.c Kirk, D.E., Optimal Control Theory -
An Introduction, pp. 34-42, Prentice-
Hall, 1970.
I11D l.c Ogata, K., Modern Control Engineering,

p. 797, Prentice-Hall, 1970.

2.c Kirk, D.E., Optimal Control Theory -
An Introduction, p. 28, Prentice-
Hall, 1970.

3.c Ogata, K., Modern Control Engineering,
pp. 728-729, Prentice-Hall, 1970.

4.c Eveleigh, V.W., Introduction to

Ccontrol S*stem Design, pp. 353-356,
McGraw-Hill, 1972.




Section Example Reference ]
; : 5.d Eveleigh, V.W., Introduction to . e .
| Control System Design, pp. 357-
: 360, McGraw-Hill, 1972.
6.4(1) Chen, C.T., Introduction to Linear

System Theory, p. 296, Holt,
Rinehart and Winston, 1970.

6.d(2) Same as 5.4

7.c(l) Kirk, D.E., Optimal Control Theory =~
An Introduction, p. 41, Prentice-
Hall, 70.

7.c(2) Kwakernaak, H. and Sivan, R.,

Linear Optimal Control Systems,
pp. 347-351, Wilev-Interscience, 1972.

8.c Parker, S.R., Digital Control
Systems (Class Notes), 1978.

9.c Kirk, D.E., Optimal Control Theory -
An Introduction, Prentice-Hall, 1979.

10.c Mowrey, J.T., Compensator Optimization
in Multiple Input Multiple Output
Control Systems, pp. 26-27, Master's
Theslis, Naval Postgraduate School,
Monterey, 1979.

Table B-1 List of References for the Examples
Worked in Chapter IIIX
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12.

13.

14.
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